


ABSTRACT

Design, Characterization, and Validation of the OpenWrist Exoskeleton

by

Evan Pezent

Robotic devices have been clinically verified for use in long duration and high

intensity rehabilitation needed for motor recovery after neurological injury. Targeted

and coordinated hand and wrist therapy, often overlooked in rehabilitation robotics,

is required to regain the ability to perform activities of daily living. To this end, a

new coupled hand-wrist exoskeleton has been designed. This thesis details the de-

sign of the wrist module and several human-related considerations made to maximize

its potential as a coordinated hand-wrist device. The serial wrist mechanism has

been engineered to facilitate donning and doffing for impaired subjects and to insure

compatibility with the hand module in virtual and assisted grasping tasks. Several

other practical requirements have also been addressed, including device ergonomics,

clinician-friendliness, and ambidextrous reconfigurability. The wrist module’s capa-

bilities as a rehabilitation training device are quantified experimentally in terms of

functional workspace and dynamic properties. Finally, the device is validated as an

rehabilitation assessment tool by considering its impact on commonly used assessment

metrics. The presented wrist module’s performance and operational considerations

support its use in a wide range of future clinical investigations.
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Chapter 1

Introduction

1.1 Background

As the fifth leading cause of death in the United States and the leading cause of long-

term disability, cerebrovascular accidents (CVAs or strokes) impact approximately

795,000 individuals each year. The related costs are projected to rise above the

2012 estimate of $316.6 billion as survival rates continue to increase [9]. In addition,

nearly 17,000 individuals per year will experience a Spinal Cord Injury (SCI) with

yearly direct and indirect costs totaling $20 billion. While CVA typically affects an

older population, the average age of injury for SCI is under the age of 41. As such,

SCI sufferers often live decades past their date of injury and incur a much heavier

economic burden due to their disabilities [10]. Improving the rehabilitative outcomes

for individuals with disabling neuromuscular conditions will have large social and

economic impacts.

Of the 7 million stroke survivors, over 90% will require rehabilitation of the hand

and wrist before they can perform activities of daily living (ADL) such as self-feeding,

dressing, and bathing [9]. For SCI, approximately 50% of all sufferers will also re-

quire similar rehabilitation [11]. Rehabilitation regimes typically employ task-oriented

movements to strengthen muscles and coordination in these patients [12], and inten-

sive therapy with high repetition numbers and long duration has been shown to

improve functional outcomes by recovering lost brain plasticity [13]. As a result, re-
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habilitation sessions are labor intensive, expensive, and consequentially often shorter

than they should be [14]. Furthermore, the clinician’s ability to deliver high quality

and consistent training also affects the therapeutic outcome of the patient.

Robotic rehabilitation devices have been proposed as a tool for clinicians in meet-

ing the rising demand for training sessions. In addition to their ability to provide

accurate and repeatable movements over long durations and high repetitions, robotic

devices can also be leveraged to record objective, quantitative performance data for

tracking the therapeutic progress of patients. These devices have been clinically ver-

ified as a path forward for both CVA and SCI rehabilitation in a number of clinical

studies [3, 15–22].

1.2 Review of Upper-Extremity Rehabilitation Robots

Rehabilitation robots are typically classified as being either end-effector based robots

or exoskeletons (see Fig. 1.1). An end-effector rehabilitation robot is one which only

the robot’s most distal link, or end-effector, interacts with the user. The most his-

torically significant upper-extremity end-effector rehabilitation robot designs include:

the 2 degree of freedom (DOF), planar MIT-MANUS [3,16,23] (commercially known

as the InMotion ARM/WRIST); the Mirror Image Movement Enabler (MIME) [24], a

modification of the industrial 6-DOF PUMA robot; and the 3-DOF ARM Guide [15].

End-effector rehabilitation robots typically allow for large functional workspaces, but

do not mirror human anatomy and are thus unable to apply torques directly to human

joints.

Exoskeletons, on the other hand, are anthropomorphically designed where robot

joint axes are typically collocated with human joints axes. They allow for the direct

application of torque to individual joints. This mapping between robot and human
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Figure 1.1 : (a) The MIT-MANUS (InMotion ARM) end-effector based rehabilitation
robot. (b) MAHI-Exo II exoskeleton based rehabilitation robot.

movement makes exoskeletons more attractive than end-effector designs for rehabili-

tation robotics. Exoskeletons may be either worn by the user or grounded. Worn (or

ungrounded) devices enable the user to engage in more natural movements in large

workspaces, but are weight limited, primarily by their actuators, and cannot offer the

torque capabilities that grounded robots do. Notable examples of upper-extremity

exoskeletons include: the 6-DOF ARMin III [14], the 7-DOF CADEN-7 [25], the 5-

DOF Rupert [26], 4-DOF MAHI-Exo II [27], and the 14-DOF X-Arm 2 (ungrounded).

Specifically for wrist-only rehabilitation are the RiceWrist [28, 29], the RiceWrist-

S [5, 8, 30], the HWARD [31], the WristGimbal [6], and the IIT Wrist Robot [7]. A

more comprehensive survey of upper-extremity devices can be found in [32].

1.3 Hand and Wrist Robotic Rehabilitation

While many devices have been developed for the wrist and hand [33–37] separately,

few allow for coordinated hand and wrist movement. This separated approach over-

looks the kinematic and dynamic linkings of the hand and wrist due to tendon and

muscle anatomy [38], as well as their position-dependent passive properties [39–42].
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Furthermore, muscles, tendons, and ligaments exert forces across multiple DOF and

give rise to complex synergies. Implementing separate hand and wrist devices pre-

cludes the ability to exploit or retrain these synergies. Therefore, integrated hand

and wrist therapy has the potential to improve the rehabilitative outcomes [1].

The READAPT (Robotic Exoskeleton to Assist Distal Arm Physical Therapy),

the coupling of a wrist exoskeleton developed in Rice University’s MAHI Lab and the

Maestro hand exoskeleton (Fig. 1.2) developed in University of Texas’ ReNeu Lab,

was proposed to enable the coordinated hand and wrist movements required in ADL

as suggested by the interconnected nature of hand-wrist musculature [1]. However,

the requirements for designing coordinated hand-wrist exoskeletons remains relatively

unknown due the sparse landscape of such devices.

Figure 1.2 : The Maestro hand exoskeleton developed by the ReNeu Lab at the
University of Texas in Austin uses remotely located actuators and a Bowden cable
style transmission to actuate the thumb, index, and middle fingers.

1.4 Design Requirements for Hand-Wrist Rehabilitation Robots

and READAPT

Rehabilitation robots must generally posses several key properties: (1) the ability

to apply ergonomically appropriate torques directly to human joints [43, 44]; (2) a
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functional workspace meeting the requirements for activities that will be trained

[43]; (3) high backdravability with zero backlash [45], (4) quantitative evaluation of

treatment [44]; and (5) the means to implement advanced control algorithms [46].

Requirements specific to coordinated hand-wrist rehabilitation robots have also

been identified. A preliminary implementation of the READAPT, which utilized the

existing RiceWrist-S exoskeleton [5], identified finger metacarpalphalangeal (MCP)

flexion/extension range of motion (ROM) limits (subsequently addressed in [47]),

wrist static friction and inertia, and undesired interactions between the hand and

wrist modules as key contributors to hand-wrist discoordination in redundant MCP

and wrist flexion/extension pointing tasks [1]. Additionally, pre-clinical trials with

the RiceWrist-S in a standalone mode [5], as well as experience and clinician feedback

from other clinical studies [48], highlighted the necessity of the user’s ability to easily

don/doff devices. This is especially true during studies with fragile skinned subjects

where donning/doffing closed-design exoskeletons (e.g. [5, 6, 27]) is not only difficult

and time consuming, but also potentially hazardous.

Figure 1.3 : A preliminary implementation of the READAPT utilized a heavily mod-
ified version of the existing RiceWrist-S wrist exoskeleton and an early iteration of
the Maestro hand exoskeleton. [1]
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In order of importance, future hand-wrist exoskeletons, including the READAPT,

would need to (6) provide a harmonious interface between the the hand and wrist

modules, (7) enable don/doff of impaired individuals with an easily accessed open

design, (8) address ergonomics and user comfort, (9) and minimize the discoordi-

nating effects of friction and inertia. Further increasing dynamic performance over

previous devices and enabling compatibility with surface electromyography (sEMG)

and passive marker motion capture were also included as design requirements specific

to the READAPT. Following the guidelines of (1-9), this thesis details the design of

the OpenWrist, the new wrist module of the READAPT.

1.5 Characterization and Validation of Rehabilitation Robots

Characterization of rehabilitation robots generally falls into one of two categories.

The first category involves properties that may indicate how well the robot will per-

form as a training device. The two most important properties, given by the design

requirements (1) and (2), are torque output and ROM. The device must be able

to provide interaction forces and a workspace sufficient to train desired activities.

Following torque and ROM are dynamic properties of the robot such as inertia, vis-

cous damping, and static and kinetic friction. Together, these properties indicate

how transparent a device may be. Highly transparent devices, ones in which passive

interaction forces between the human and robot are small, are desired for robotic

rehabilitation since we would like to preserve natural human motion as much as pos-

sible. Intuitively, lower values of inertia, damping, and friction will give rise to a more

transparent device.

The second category, often overlooked in the development of rehabilitation robots,

includes analyses that may indicate how accurately the device will perform as an as-
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sessment or measurement tool. Several metrics exist for assessment, however one of

the most prominent is movement smoothness. It is well known that healthy indi-

viduals generate smooth movements during pointing or reaching tasks [49–51]. As

such, tracking the improvement of movement smoothness during stroke rehabilitation

may be indicative of therapeutic outcomes. The same robots that are employed for

rehabilitation training are often used as assessment tools, usually through an unpow-

ered back-drive [18] mode, or, if necessary, a “zero-impedance” mode where robot

dynamics are canceled in the control implementation. A non-trivial assumption is

usually made during assessment: that the robot has minimal effect on the measure-

ments used to compute assessment metrics. This assumption has been shown to be

invalid [1, 52, 53]. A direct comparison between movement in the presence of the

rehabilitation robot and the same movement in a no-robot condition is required to

characterize and validate the device as an accurate assessment tool.

While the second category is intimately tied with the first (specifically through

device transparency), to what extent remains an open question in the field. Specif-

ically, what properties of the robot give rise to unnatural movements? Portions of

this thesis attempt to provide some answers to this question.

1.6 Thesis Outline

This thesis is structured as follows: Chapter 2 details the design and development of

the OpenWrist, the new wrist exoskeleton module to be used for coordinated hand-

wrist rehabilitation in conjunction with the ReNue Maestro hand-exoskeleton, collec-

tively known as the READAPT. Each of the nine design requirements for hand-wrist

exoskeletons in Section 1.4 are addressed. Chapter 3 provides the characterization of

performance properties of the OpenWrist as a training device, including joint iner-
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tia, viscous damping, static and kinetic friction, and closed-loop position bandwidth.

Both Chapters 2 and 3 conclude with a comparison between the OpenWrist and other

wrist-exoskeletons. Chapter 4 validates the OpenWrist as an assessment device, while

also providing some insight into the effects that robot dynamic properties have on

assessment smoothness metrics.



9

Chapter 2

Design

This chapter presents the mechanical design of the OpenWrist (Fig. 2.1), a 3 degree

of freedom (DOF) robotic exoskeleton for rehabilitation of the wrist and hand follow-

ing spinal cord injuries and cerebrovascular accidents (CVA). The device incorporates

several major improvements over those previously developed in the Mechatronic and

Haptic Interfaces (MAHI) Lab, and allows for compatibility with the ReNeu Maestro

Hand Exoskeleton (see Fig. 2.16). The kinematic structure and mechatronic imple-

mentation are also discussed. The chapter concludes with quantitative comparisons

of capabilities between the OpenWrist and other wrist exoskeletons. A preliminary

coupling with the ReNue Maestro hand exoskeleton is also presented.∗

2.1 Mechanical Design

The OpenWrist is the evolution of the RiceWrist-S, previously presented in [5] and

shown in Fig. 2.15, with major refinements to each degree of freedom (DOF) to

increase performance, functionality, and most importantly, compatibility with the

Maestro hand exoskeleton. Like its predecessor, it employs a serial RRR mechanism

for manipulation of the user’s wrist and forearm in favor of the parallel RPS mecha-

nism found on the RiceWrist [29]. While a parallel RPS mechanism offers extremely

∗Portions of this chapter originally appeared in a paper submitted by Pezent, Rose, Desphande,

and O’Malley in April 2017 [54]. Here, the work is expanded to include new commentary and

additional figures.
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Figure 2.1 : MAHI OpenWrist – 3 DOF forearm and wrist exoskeleton for pathology
agnostic rehabilitation in a standalone, wrist-only configuration.

low inertia and friction at the wrist, its range of motion (ROM) and torque capa-

bilities cannot satisfy the requirements for training activities of daily living (ADL).

The serial RRR mechanism solves this issue, but introduces increased inertia and

friction. The first rotational joint actuates pronation/supination (PS) of the forearm,

while the second and third actuate flexion/extension (FE) and radial/ulnar deviation

(RU) of the wrist, respectively. A fourth passive linear degree of freedom between

the third joint and the point of human interface (i.e. the Maestro hand exoskeleton

or the optional hand grip discussed in Section 2.1.4) allows for small misalignments

between the user’s and robot’s joints. Each actuated DOF is powered by a brushed

DC motor (see Table 2.2). To ensure backlash free operation, power is transmitted

through capstan-cable drives, which involves winding a high tensile strength cable

around a small diameter threaded spool and terminating the cable on the ends of a
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larger diameter capstan arc. The overall design and novel features of each individ-

ual DOF and the entire unit are detailed in the subsections that follow, and device

capabilities are provided in Table 2.4.

2.1.1 Joint 1: Pronation/Supination

The PS joint has been designed to address a major concern for robotic exoskeletons:

donning and doffing. All MAHI Lab designs thus far have required that the user

insert their hand through an ring encompassing the PS joint. This task, trivial

for non-impaired users, proves challenging for impaired subjects with reduced motor

control and spasticity. Furthermore, a closed design requires that the Maestro hand

exoskeleton be awkwardly donned after the user has inserted their arm into the wrist

Figure 2.2 : Joint 1: Pronation/Supination – (a) The fixed elbow support assembly
includes: a bolt-plate for rigidly securing device to a mechanical breadboard; the
curvilinear slider mechanisms; the actuator for joint 1 (PS); and the adjustable elbow
cuff. (b) The components that contribute to the mass and inertial properties of the
PS link. The curvilinear rails, not visible, are mounted behind the central hub. Note
that the actuator for joint 2 (FE) is also mounted to the hub. This sub-assembly
is conceptual and never independently realized; link 1 is instead assembled as in (c)
where the hub is mounted to the fixed elbow support assembly via the curvilinear
rails, and front portion containing the joint 2 (FE) bearings is contained within the
FE sub-assembly (Fig. 2.3)-b. This configuration is referred to as the “PS Module”.
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exoskeleton. Eliminating this shortcoming was accomplished by switching from a

traditional closed radial bearing to an open curvilinear rail and slider solution (seen

in Fig. 2.1 and Fig. 2.2). Four 60◦, 100mm radius rail sections are mounted to a

hub to provide 240◦ of rail space. To support expected moment loads, two slider

mechanisms are used, each mounted to a fixed frame and elbow support assembly, as

shown in Fig. 2.2-a. Thus, it is the rails and hub that move instead of the sliders

themselves. The spacing of the sliders is such that approximately 170◦ of motion is

achievable in the PS joint. The decision to have the rail hub rotate was made so that

it could simultaneously serve as a capstan arc in the transmission system. Unlike the

RiceWrist-S, which used a direct drive motor, the PS joint in the OpenWrist employs

a capstan-cable transmission. As a result, the new device more than doubles torque

output from 1.69 Nm to 3.50 Nm.

2.1.2 Joint 2: Flexion/Extension

With the addition of the relatively heavy rails and hub, significant changes to distal

joints were necessary to offset the added inertia to the PS joint. First, the distance

from the PS joint to the center of the FE axis was shortened. This change not

only removed unnecessary material and weight, but also allowed for the elimination

of an idler pulley mechanism present in the RiceWrist-S. It is worth noting that

the FE actuator was also relocated from the dorsal side of the hand to the palmer

side as shown in Fig. 2.2-b and Fig. 2.15-c. Second, the RU actuator was moved

approximately 2 inches closer to the PS axis by creating a gap in the FE capstan and

shaft for the motor (Fig. 2.3 and Fig. 2.15-d).
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Figure 2.3 : Joint 2: Flexion/Extension – (a) The components that contribute to the
mass and inertial properties of th FE link. Note the placement of the joint 3 (RU)
actuator in the center of the FE axis. (b) The actual assembly of the “FE Module”.
Here, components contained within the RU module (see Fig. 2.4-b) are removed and
the assembly containing the FE bearings in Fig. 2.2-b is added. This configuration
allows for rapid ambidextrous reconfiguration discussed later in the this chapter (Fig.
2.7).

2.1.3 Joint 3: Radial/Ulnar Deviation

Due to the placement of the RU actuator, the point of contact between the actuator

shaft and capstan arc requires relocation so that an appropriate range of motion is

achievable. Previously, the RiceWrist-S accomplished this via a method described

in [5], which involved spanning and tensioning cable between a threaded motor shaft

and a second threaded aluminum shaft. Issues with robustness and maintaining cable

tension led to a modification which introduced two idler pulleys as a means to relocate

the point of contact, as seen in Fig. 2.15. Further improvements to this idler pulley

method were made with the OpenWrist. To reduce overall form-factor, three smaller

pulleys were substituted for the two large pulleys. In addition, the threaded spool

was doubly supported to prevent deflection in the spool as the cable is tensioned,

thus reducing binding and friction.
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Figure 2.4 : Joint 3: Radial/Ulnar Deviation – (a) The components that contribute
to the mass and inertial properties of the RU link. (b) The actual “RU Module”
assembly houses the RU capstan and spool, 3 idler pulleys, and an Oldham quick-
connect coupler. (c) The “Grip Module” detached from the RU capstan. Note the
passive linear degree of freedom at the base of the grip.

To maximize compatibility with the Maestro hand exoskeleton, two additional key

changes were made. First, the overhanging bridge coupling the RU DOF to the hand,

which would have made interfacing with the Maestro impossible, was eliminated (Fig.

2.15-e). Second, the RU capstan and transmission assembly was relocated from the

palmar side of the hand to the dorsal side (Fig. 2.15-f) to prevent interference with

the hand exoskeleton during grasping motions.

2.1.4 Practical Considerations

Several features have been introduced to make the device more functional for users,

clinicians, and researchers alike. A foam padded elbow support (Fig. 2.5) addresses

an ergonomic downfall of previous devices. The support can be adjusted laterally

and vertically and fitted with small and large sized cuffs. The support preserves the

integral assumption of exoskeletons by reducing user movement with respect to the

exoskeleton, and avoids an oversight present in previous devices whereby subjects

with fragile skin would come into contact with bare metal surfaces, pinch points, and

exposed fasteners.
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Figure 2.5 : Foam padded elbow support – (a) Hand knobs can be loosened to adjust
the support laterally. (b) Small size cuff assembly can be quickly swapped with a
large size cuff assembly.

Each joint integrates an in-line cable tensioning mechanism (Fig. 2.6). With

clinicians in mind, all joints can be quickly re-wrapped and tensioned when provided

with a 1/4” wrench and pre-made cable sections. It is worth noting that the choice

of cable was also upgraded to pre-stretched, ultra-flexible 7x19 strand core stainless

steel which further reduces friction and prevents loosening with continued use.

Figure 2.6 : In-line cable tensioning mechanisms for each joint. All tensioners are
adjustable with a standard 1/4 inch wrench when provided with pre-made cable sec-
tions and crimped on copper fittings. (a) Tensioner mechanism for PS joint (panel
removed), (b) tensioner mechanism for FE joint (panel removed), (c) tensioner mech-
anism for RU joint.
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Since ROM in the FE joint is asymmetrical, the ability to change between left-

handed and right-handed configurations was implemented. The process for changing

configurations is detailed in Fig. 2.7. Note that because the PS and RU modules’

cable windings are self-contained, only the FE joint would require rewinding in the

event of a configuration change.

Figure 2.7 : Device modularity and ambidextrous reconfiguration – (a) The device
assembled in a right-handed configuration. (b) The device undergoing reconfigura-
tion. First, the device is disassembled into five sub-assemblies – the PS Module (i),
the FE Module (ii), the FE actuator (iii), the RU Module (iv), and the Grip Module
(v). Next, the FE actuator is translated to the opposite side and secured in a custom
“+” shaped socket. The FE Module is then rotated 180◦ and reattached to the PS
Module. The RU Module is translated to the opposite side and reattached to the now
rotated FE Module. Finally, the Grip Module is rotated 180◦ and reattached to the
RU Module. (c) The device assembled in a left-handed configuration.

Other improvements include: an upgrade from 6061-T6 to 7075-T6 aluminum

alloys, allowing for reductions in thickness in multiple areas; the use of hybrid-ceramic

ball bearings with Si3N4 balls in the FE and RU joints, offering decreased friction and

requiring no lubrication; and routing of electrical wires through joint axes to eliminate

wire draping and drag (Fig. 2.8-b). Of particular interest is the application of a

white polymer-ceramic coating, brand named Cerakote R©. The coating, typically used

for military small arms, reduces infrared signature, making passive marker motion
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capture studies feasible (see Fig. 2.9), and has a high dielectric strength that enhances

compatibility with sEMG.

Figure 2.8 : Other considerations – (a) Ceramic hybrid ball bearings feature ceramic
balls in steel races, providing reduced friction. (b) Electrical wire routing through
joint axes reduces wire draping and drag.

Figure 2.9 : Demonstration of the polymer-ceramic coating applied to the OpenWrist
when used under passive marker motion capture – (a) the motion capture volume
as captured by a hand-held digital camera. The RiceWrist-S (left) and OpenWrist
(right) are placed in the background, and a motion capture “rigid body” featuring
five markers is placed in the foreground. (b) The same environment as captured
by the motion capture system’s infrared camera. (c) The processed black-and-white
version of (b) to be used for marker position extraction. Ideally, only the markers
should be visible (seen in the bottom half of the frame); however, the uncoated
RiceWrist-S produces false marker readings (seen in the upper half of the frame).
The polymer-ceramic coating on the OpenWrist completely eliminates it’s infrared
signature, making it suitable for motion capture studies.
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Safety

A primary concern for developing rehabilitation robots to be use in a clinical setting

is user safety. Several safety features were implemented on the OpenWrist to ensure

safe operation. To prevent overextension of human joints, each joint of the OpenWrist

integrates a mechanical hardtop at the ends of its ROM. Rate limiting blocks in

the control implementation can be used to limit velocity, if desired, and current

saturation blocks prevent over-torquing joints. Finally, an easily accessible emergency

stop button, which must be connected for the system to initiate, can be used to

deactivate all amplifiers in the case of an unexpected behavior.

Hand Grip

Although users are primarily intended to interface the OpenWrist via the Maestro

hand exoskeleton, a hand grip was developed should wrist-only studies be conducted.

Virtually all wrist exoskeletons, including those developed by our group, feature a

grip that is vertically oriented when the exoskeleton is in its neutral position. An

overlooked flaw with this style of grip is that it puts the wrist in an orientation that

is already significantly radially deviated. Thus, the neutral orientations of the robot

and user do not coincide. To address this, multiple grip angles (see Fig. 2.10) were

evaluated during the design phase. Fig. 2.11 maps the achievable ROM in the RU

joint workspace as FE is varied in 5◦ increments for the four grips tested. Note the

significant increase in the upper workspace limits from the vertical grip to the angled

grips. However, simply including an angle, as with the 25◦ and 35◦ grips, also resulted

in the misalignment of joint axes and collision with the exoskeleton before reaching

the lower workspace limits. The final grip (depicted in Fig. 2.10-b), has an altered

geometry at its attachment point to regain this lost lower workspace and is angled
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at 30◦ based on user feedback for the the 25◦ and 35◦ grips. Compared with the

traditional vertical grip, the new angled grip offers an increase of approximately 51%

in FE-RU workspace area.

Figure 2.10 : (a) A traditional vertical grip (i) was initially tested and was found to
prohibit full range of motion in radial deviation. Angled grips of 25◦ (ii) and 35◦ (iii)
regained the lost range, but caused the wrist to pivot and draw the linear slider
rearward, resulting in collisions with the FE Module. The final grip (iv), angled at
30◦ positions the linear slider attachment point forward and has a contoured underside
to minimize collision with the FE Module. (b) User interfacing with the OpenWrist
via the final 30◦ modified grip.

Figure 2.11 : ROM in the RU joint as a function of FE joint angle for the multiple
grip styles evaluated. Shaded regions place emphasis on the workspace of the vertical
grip and the final 30◦ angled grip that was chosen.
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2.2 Kinematic Structure

The device’s kinematic structure was modeled using the proximal Denavit Hartenberg

(DH) parameter conventions detailed in [55] and differentiated from other DH conven-

tions in [56]. Fig. 2.12 shows each joint’s axis of rotation and the chosen direction of

positive Z with regard to DH notation. Since all joint axes intersect, the origins of the

base frame and each joint frame were placed coincidently at the intersection point in

an effort to keep as many parameters in the DH table as possible equal to zero. Note

that the axes assignment detailed here differs from that presented in [5]. The new

assignment was chosen such that a positive rotation about each axis, conventionally

C.C.W when viewed from above, would correspond with the first letter in the joint’s

acronym, i.e., rotation in the direction of flexion (F) is positive and rotation in the

direction of extension (E) is negative for the FE axis.

Figure 2.12 : The chosen assignment of each joint Z-axis for the proximal Denavit
Hartenberg convention. PS (red), FE (green), and RU (blue) links are highlighted to
match their respective axes.
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The DH parameters a, α, d, and θ for joints 1, 2, and 3 are given in Table 2.1.

Note that π/2 is subtracted from θ2 so that the FE joint is in its designed neutral

position when θ2 = 0.

Table 2.1 : Proximal Denavit Hartenberg Parameters

i ai−1 αi−1 di θi

1 0 0 0 θ1

2 0 π/2 0 θ2 − π/2

3 0 π/2 0 θ3

Using Table 2.1, the transforms from {i-1} to {i} is can be computed with

i−1
i T =



cθi −sθi 0 ai−1

sθ1cαi−1 cθ1cαi−1 −sαi−1 −sαi−1di

sθ1sαi−1 cθ1sαi−1 cαi−1 cαi−1di

0 0 0 1


(2.1)

Finally, chaining together successive transforms yields the transform from {3} to {0}:

0
3T =0

1 T
1
2 T

2
3 T =



sθ1sθ3 + cθ1cθ3sθ2 cθ3sθ1 − cθ1sθ2sθ3 −cθ1cθ2 0

cθ3sθ1sθ2 − cθ1sθ3 −cθ1cθ3 − sθ1sθ2sθ3 −cθ2sθ1 0

−cθ2cθ3 cθ2sθ3 −sθ2 0

0 0 0 1


(2.2)

2.3 Dynamic Model

The equations of motion (EOM) for the OpenWrist were computed symbolically in

MATLAB (see Appendix A) using the iterative Newton-Euler dynamics algorithm

described in [55]. First, velocities and accelerations are computed iteratively for each
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link starting at link 1 and ending at link 3. Second, joint torques and interaction

forces and torques are computed recursively from link 3 back to link 1. The effects

of gravity are included simply by giving {0} an initial fictitious upward acceleration

equal to [0,−g, 0]T . The resulting output can be conveniently refactored in the form

T = M(Θ)Θ̈ + V (Θ, Θ̇) +G(Θ) (2.3)

where M(Θ) is the 3 × 3 mass matrix, V (Θ, Θ̇) is the 3 × 1 vector of centrifugal

and Coriolis terms, and G(Θ) is the 3 × 1 vector of gravity terms. Torques due to

reflected actuator rotor inertias and nonrigid body effects are included:

Tm,ref = Jm,ref ◦ Θ̈ , TB = B ◦ Θ̇ , TFK
= FK ◦ sign(Θ̇) (2.4)

where

Jm,ref = [Jm1η
2
1 , Jm2η

2
2 , Jm3η

2
3]T , (2.5)

B is the 3 × 1 vector of viscous damping coefficients, Fk is the 3 × 1 vector kinetic

friction parameters, and ◦ denotes the Hadamard, or element-wise, product. Adding

2.4 to 2.3 yields the final EOM for the OpenWrist:

T = M(Θ)Θ̈ + V (Θ, Θ̇) +G(Θ) + Jm,ref ◦ Θ̈ +B ◦ Θ̇ + Fk ◦ sign(Θ̇) (2.6)

or
τ1

τ2

τ3

 =


m11 m12 m13

m21 m22 m23

m31 m32 m33



θ̈1

θ̈2

θ̈3

+


v1

v2

v3

+


g1

g2

g3

+


Jm1η

2
1 θ̈1 + b1θ̇1 + fk1sign(θ̇1)

Jm2η
2
2 θ̈2 + b2θ̇2 + fk2sign(θ̇2)

Jm3η
2
3 θ̈3 + b3θ̇3 + fk3sign(θ̇3)


(2.7)

Symbolic formulations of all m, v, and g terms in 2.7 can be found in Appendix ,

and all b and fk terms can be found in the experimental characterization presented

in Chapter 3.
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2.4 Mechatronics and Controls

All actuators are Maxon RE-series DC motors, each fitted with a Broadcom/Avago

HEDL-5540 A11 optical encoder capable of 500 counts per revolution. Specific actu-

ator details as well as transmission ratios and sensor resolutions at the joint are listed

in Table 2.2. Power is supplied from a Quanser VoltPAQ-X4 amplifier (Fig. 2.13-b),

and up to 4.16 A of continuous current can be provided to each actuator. The ampli-

fier and encoders interface with MATLAB and Simulink through a Quanser Q8-USB

data acquisition device (Fig. 2.13-a) and Quanser’s Quarc control software. The

system is capable of operating at rates of up to 2 kHz depending on the complexity

of the controller.

Figure 2.13 : (a) Quanser Q8-USV data acquisition device. (b) Quanser VoltPAQ-X4
linear voltage amplifier.

Table 2.2 : Actuator and Sensor Details

Joint Actuator (PN) Transmission Sensor (Joint Resolution)

PS Maxon RE-40 (148877) 1:18.7 Broadcom HEDL-5540 (0.0096◦)

FE Maxon RE-40 (148877) 1:19.2 Broadcom HEDL-5540 (0.0094◦)

RU Maxon RE-30 (310009) 1:25.6 Broadcom HEDL-5540 (0.0070◦)
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While the VoltPAQ-X4 is a linear voltage-controlled amplifier by default, experi-

mental settings within the Quanser’s Quarc control software allow the amplifier to be

run in a closed-loop current control mode. A first order controller with feed forward,

shown in Fig. 2.14, was chosen as the method of current control.

D(z)U YG(s)Kg

Kff

Figure 2.14 : First order current controller with feed forward. Controller gains are
listed in Table 2.3 and the plant G(s) is defined in Eq. 2.8.

The actuator plant G(s) is given by the transfer function:

G(s) =
Ia(s)

Va(s)
=

Jms+Bm

LJms2 + (RJm + LBm)s+ (RBm +KtKb)
(2.8)

where Jm is the motor rotor inertia, Bm is the motor viscous damping, L is the

terminal inductance, R is the terminal resistance, Kt is the torque constant, and Kb is

the back-EMF constant. The transfer function D(z) was chosen to be a Proportional-

Integral (PI) controller. The controller was designed by simulating the step input

response of a continuous-time version of Fig. 2.14 and using MATLAB’s pidtune

function to achieve a critically damped response. The continuous-time D(s) was

then converted to the discrete-time D(z) using a bilinear approximation (Tustin)

discretization method. The feed forward term Kff was set to 0, and the post-scale

factor Kg was set to 1000 per Quanser’s recommendation. The control gains for each

joint are listed in Table 2.3.
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Table 2.3 : Current Controller Details

Joint D(z) Kff Kg

PS 8.03z−1.382
z−1

0 1000

FE 18.43z+1.912
z−1

0 1000

RU 18.43z+1.912
z−1

0 1000

2.5 Comparisons and Discussion

The OpenWrist satisfies all design goals previously outlined for coordinated hand-

wrist exoskeletons. A comprehensive comparison between the OpenWrist and other

wrist devices as compared to ADL (values taken from [25]) is given in Table 2.4 at

the end of the chapter. The OpenWrist exceeds the requirements of ADL in both

ROM and torque output. Additionally, ROM for each joint is comparable with other

devices, all of which (except the RiceWrist) would be considered highly dexterous

robots. Torque output is slightly higher than all other devices for all joints.

Fig. 2.15 summarizes the major improvements the OpenWrist makes over its pre-

decessor the RiceWrist-S. The introduction of an open PS design makes donning and

doffing for impaired users feasible and ergonomics are also addressed with the addition

of an adjustable foam padded elbow support (Fig. 2.15-b) and 30◦ angled grip for

standalone mode. Additional practical improvements allowing for rapid maintenance

and ambidextrous reconfiguration enhance its effectiveness in a clinical setting.

Compatibility with the Maestro hand-exoskeleton is insured by eliminating obtru-

sive geometry present in the RiceWrist-S (Fig. 2.15-e), and relocating the RU module

(2.15-f) so that grasping motions can occur. A preliminary coupling of the devices
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Figure 2.15 : Major design changes between the RiceWrist-S (left) and the OpenWrist
(right) – (a) PS joint now open, (b) padded elbow support introduced, (c) FE
actuator moved to palmar side, (d) RU actuator moved closer to PS axis, (e) RU
bridge eliminated to minimize interference with Maestro, (f) RU module moved to
dorsal side.

is shown in Fig. 2.16. In reference to Fig. 2.16-a, no geometry of the OpenWrist

interferes with the Bowden cable transmission of the Maestro. Furthermore, the new

open design of the PS module allows for the Maestro to be donned before entering

the OpenWrist. Fig. 2.16-b illustrates how the relocation of the RU module (top)

will enable grasping motions. Also note the ample clearance between the Maestro

finger links and the RU module.

Figure 2.16 : MAHI OpenWrist exoskeleton module shown with the ReNeu Maestro
hand exoskeleton module in the combined READAPT configuration.
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Table 2.4 : Range of motion (ROM) and torque output of the OpenWrist compared
with activities of daily living (ADL) and other wrist devices including the MIT-Manus
(MIT) [3], RiceWrist (RW) [4], RiceWrist-S (RW-S) [5], Wrist Gimbal (WG) [6], and
IIT Wrist Robot (IIT) [7].

Range of Motion [deg]

Joint ADL MIT IIT WG RW RW-S OpenWrist

PS 150 140 160 180 180 180 170 (85 P, 85 S)

FE 115 120 144 180 65 130 135 (70 F, 65 E)

RU 70 75 72 60 63 75 75 (35 R, 40 U)

Max Continuous Torque [Nm]

Joint ADL MIT IIT WG RW RW-S OpenWrist

PS 0.06 1.85 2.77 2.87 2.75 1.69 3.50

FE 0.35 1.43 1.53 1.77 1.45 3.37 3.60

RU 0.35 1.43 1.63 1.77 1.45 2.11 2.30
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Chapter 3

Characterization as a Training Device

In this chapter, I present the experimental characterization of the OpenWrist in-

cluding estimates of position bandwidth, static and kinetic friction, viscous damping

coefficients, and inertial elements. Three separate experiments were performed: a

position step input experiment, a position ramp input experiment, and a Schroeder

multisine excitation signal experiment. Each of the experiments was performed on

all three joints. For consistency, the specific characterization experiments conducted

match those previously used for our group’s devices [4, 5, 57] with some slight modi-

fications.∗

3.1 Experimental Setup

To eliminate gravitational disturbances, a custom fixture was used to orient the device

such that the axis of the joint in question was parallel with the direction of gravity

(see Fig. 3.1). The levelness of the joint axis was ensured using a precision electronic

level. The remaining two joints were locked in their neutral position with a physical

pin and/or high proportional gain PD controller. The passive linear DOF at the base

of the grip was secured in the center of its ROM.

∗Portions of this chapter originally appeared in a paper submitted by Pezent, Rose, Desphande,

and O’Malley in April 2017 [54]. Here, the work is expanded to include new commentary and

additional figures.
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Figure 3.1 : Characterization experimental setups. In each case, the joint in question
is parallel to gravity and the remaining joints are locked in their neutral position with
a PD controller. For FE and RU experiments, the PS joint was also pinned with a
dowel rod. (a) Setup for PS joint experiments. (b) Setup for FE joint experiments.
(c) Setup for RU joint experiments.

3.2 Step Input Experiment: Inertia, Viscous Damping, and

Kinetic Friction

The dynamic properties of the device were investigated by adopting the model and

logarithmic decrement techniques first described in [58], and subsequently used in the

characterization of other rehabilitation robotic devices [4,8,57,59]. The translational

mass-spring-damper system described in [58] is first recast as its rotational equivalent:

Jθ̈ + bθ̇ + kθ + f(θ̇) = 0 (3.1)

where f(θ̇) is the dry friction, or kinetic Coulomb friction, modeled as

f(θ̇) = fksign(θ̇) (3.2)

By examining the step response of the underdamped system and having prior knowl-

edge of the mechanical stiffness k, the inertial (J), viscous damping coefficient (b),

and dry friction (fk) contributions to exponential decay can be isolated.

Since each joint in the OpenWrist displays effectively zero mechanical stiffness,

the joint actuator’s PD controller was set to behave as a relatively soft spring, i.e

Kp > 0 and Kd = 0 (exact gain values used are provided in Table 3.1). Thus, the
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equivalent stiffness and viscous damping of each joint was:

k = kmech +Kp = Kp (3.3)

b = bmech +Kd = bmech (3.4)

Table 3.1 : Step Input Experiment PD Control Gains

Joint Free Joint Locked

Joint Kp [Nm
rad

] Kd [Nm·s
rad

] Kp [Nm
rad

] Kd [Nm·s
rad

]

PS 15 0 450 0.75

FE 5 0 450 0.75

RU 8 0 50 0.25

For each joint, a square wave position input with a step-to-step amplitude of

20◦ was commanded, and 3 complete cycles were recorded. To cover most of the joint

workspace, the test was conducted about starting joint angles of -50◦, 0◦, 50◦ for PS;

-30◦, 0◦, 30◦ for FE; and -5◦, 0◦, 5◦ for RU. Representative plots of the responses for

each joint when starting at 0◦ are shown in Fig. 3.2. Note that the responses for the

non-zero starting angles are essentially identical to the 0◦ starting angle in all cases.

Peaks and valleys were extracted from the underdamped response separately for

both the top and bottom response of each cycle for each starting angle. Each set of

successive peaks and valleys define a vector of extrema

Y =

[
Y0 Y1 · · · Ynp+nv−2 Ynp+nv−1

]
=

[
p1 v1 · · · pnp vnv

]
(3.5)

where pi and vi are the ith peak and valley, respectively, and np and nv are the number

of peaks and valleys, respectively. Next, an intermediate quantity β is estimated for
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Figure 3.2 : Representative step input responses for PS (top), FE (middle), and RU
(bottom), when starting about 0◦. Note that only one cycle from the response is
shown; all three cycles are shown in the inlaid plot.
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each set of four consecutive extrema using the decrement equation

β = − 1

π
log(−Yi+1 − Yi−1

Yi − Yi−2

) (3.6)

Once β is calculated, an estimate of the system’s damping ratio ζ is given by:

ζ =
√
β2/(β2 + 1) (3.7)

Equating 3.1, substituted with 3.3 and 3.4, with the typical characteristic equation

for a second-order system yields equations for estimating the joint inertia and viscous

damping coefficient:

J = Kp/ω
2
n (3.8)

bmech = 2Jζωn (3.9)

where ωn = wd/
√

1− ζ2, ωd = 2π/T , and T is the period between successive peaks

(or successive valleys). Finally, the dry kinetic friction is estimated with:

fk = xkKp (3.10)

where

xk =
Yi+1 − Yi + e−βπ(Yi − Yi−1)

2(−1)i(e−βπ + 1)
(3.11)

Values for the joint’s inertia J , viscous damping coefficient B, and kinetic dry friction

fk were averaged across all responses and starting angles, as reported in Table 3.2.

To validate the accuracy of the model, a Simulink model of 3.1 with the averaged

parameters and proportional gain constant was used to simulate the response of each

joint when input with the same square wave. A representative simulated response for

each joint is shown in Fig. 3.3.

Additionally, the estimated inertia values were cross checked with theoretical val-

ues from SolidWorks. The theoretical values were obtained by considering the com-

ponents of the joint in question and all distal joints, i.e, Fig. 2.2-b + Fig. 2.3-a +
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Figure 3.3 : Representative simulated responses compared with the actual responses
for PS (top), FE (middle), and RU (bottom). Here, each response is taken from the
upper response of the first square wave cycle when starting from 0◦ (see Fig. 3.2).
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Fig. 2.4-a for the PS joint; Fig. 2.3-a + Fig. 2.4-a for the FE joint; and Fig. 2.4-a

for the RU joint. The rotor inertia (as obtained from the motor data sheet) that is

reflected from each joint’s actuator through the capstan transmission was calculated

and added to the inertia values obtained from Solidworks. The theoretical inertia

values are provided in Table 3.2.

Table 3.2 : Step Input Experiment Results

Joint Inertia (Exp.) Inertia (SW) Viscous Coeff. Kinetic Friction

[kg ·m2] [kg ·m2] [Nm·s
rad

] [Nm]

PS 0.0305 0.0301 0.0252 0.1891

FE 0.0119 0.0123 0.0019 0.0541

RU 0.0038 0.0038 0.0029 0.1339

3.3 Ramp Input Experiment: Static Friction

To investigate static friction, multiple position ramps were commanded across the

workspace of each joint. The input ramps up or down 5◦ over 2 seconds, pauses

for an additional 2 seconds, and then continues ramping in this manner until the

extreme points of the workspace have been reached (see Fig. 3.4). Since subtle

changes in velocity were more important than accurate position control, a soft pro-

portional controller was used (see Table 3.3). Static friction is inferred from the

commanded torque when movement is initiated, i.e., one time step before the instant

the backwards-differentiated velocity becomes non-zero near the beginning of each

ramp. Static friction as a function of joint workspace is shown in Fig. 3.5, with

average and max values highlighted in Table 3.4.
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Figure 3.4 : Ramp input position and velocity responses for PS (top), FE (middle),
and RU (bottom).
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Table 3.3 : Ramp Input Experiment PD Control Gains

Joint Free Joint Locked

Joint Kp [Nm
rad

] Kd [Nm·s
rad

] Kp [Nm
rad

] Kd [Nm·s
rad

]

PS 5 0 450 0.75

FE 3 0 450 0.75

RU 2 0 50 0.25

Figure 3.5 : Static friction of the PS, FE, and RU joints taken during the ramp test
and plotted along their respective workspaces.

3.4 Schroeder Multisine Input Experiment: Closed-Loop Po-

sition Bandwidth

It is important to determine the closed-loop position bandwidth since the device may

employ a position control strategy in the future. A critically damped PD controller

was implemented, and a Schroeder multisine excitation signal conditioned between
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Table 3.4 : Ramp Input Experiment Results

Joint Avg. Static Friction [Nm] Max Static Friction [Nm]

PS 0.2250 0.3990

FE 0.0720 0.1042

RU 0.1180 0.1537

-10◦ and 10◦ was used as the position input. A Schroeder-phased multisine is the sum

of sinusoids where phases are chosen to minimize peak-to-peak amplitudes [60]. The

input signal is defined by

um(t) =
N∑
k=1

Amcos(2πωkt+ φk) (3.12)

where

N ,
ωmax − ωmin

η
+ 1, (3.13)

Am ∈ R and, for k = 1, ..., N,

φk ,
−k(k − 1)π

N
, (3.14)

ωk , ωmin + η(k − 1) (3.15)

Fig. 3.6 shows the plots of the commanded versus actual positions for all three

joints, with attenuation beginning around the 10 second mark for each. Fig. 3.7

provides the Bode plot for each DOF with the bandwidth cutoff of 3 dB clearly

shown.

3.5 Comparisons and Discussion

A comprehensive comparison between the OpenWrist and previous MAHI devices is

provided at the end of this chapter in Table 3.6. Characterization of the OpenWrist
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Table 3.5 : Schroeder Wave Input Experiment PD Control Gains

Joint Free Joint Locked

Joint Kp [Nm
rad

] Kd [Nm·s
rad

] Kp [Nm
rad

] Kd [Nm·s
rad

]

PS 25 1.15 450 0.75

FE 24 0.80 450 0.75

RU 11.5 0.25 50 0.25

underscores the significance of the numerous design considerations likely to improve

its potential as a rehabilitative device. The model from [58] captures the dynamic

properties with reasonable accuracy despite its simplicity (Fig. 3.3). Furthermore, the

estimated inertia for each joint agrees with values taken from the Solidworks model

(Table. 3.2). Compared with its predecessor, the RiceWrist-S, inertia reductions

of 12% and 21% are achieved in the FE and RU joints, respectively, as a result of

lower weight components and strategically placed actuators. Hybrid-ceramic ball

bearings and improved capstan-cable windings contribute to decreases in maximum

static friction by 47% in FE and 27% in RU. The separation of FE static friction

measurements shown between 40◦ and 60◦ in Fig. 3.5 suggests that the test was

affected by gravity. The effect remained repeatable despite multiple attempts to

eliminate it and is likely an outcome of the FE module’s asymmetric design. The

inconsistent static friction at the extremes of the RU workspace are explained by a

build-up and release of cable tension during directional changes near the edges.

Although the curvilinear rails resulted in increased inertia and static friction in

the PS joint, the open design is of far greater importance. Note the periodic spikes

in PS static friction shown in Fig. 3.5; these spikes roughly correlate with the gaps
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Figure 3.6 : Schroeder multisine input responses for PS (top), FE (middle), and RU
(bottom). The input excites the joint through a range of increasing frequencies.



40

Figure 3.7 : Bode plots obtained by estimating the transfer function of Fig 3.6.
Bandwidth values, defined by the -3 dB cutoff, are 4.7, 7.0, and 9.8 Hz for the PS,
FE, and RU joints, respectively.

between the four rail segments. Thus, the high static friction value is likely due

to a slight misalignment of the rails. This issue can be expected to improve with

continued adjustment and break-in. Furthermore, because torque output on the PS

joint has been doubled, any undesired effects of increased inertia and friction can be

compensated for in control implementation.

Kinetic friction values measured for the OpenWrist consume a maximum of only

6% of the continuous torque output in any joint. Closed-loop position bandwidth is

increased over the RiceWrist-S across the board and either exceeds or is slightly less

than the 5 Hz achievable by humans in uncontrolled motions [61].
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Table 3.6 : Average device characteristics for the MAHI RiceWrist (RW) [4],
RiceWrist-S (RW-S) [8], and OpenWrist wrist exoskeletons.

Inertia [kg ·m2] Viscous Coefficient [Nm·s
rad

]

Joint RW RW-S OpenWrist RW RW-S OpenWrist

PS 0.0257 0.0258 0.3050 0.0167 0.428 0.0252

FE 0.0020 0.0134 0.0119 0.0283 0.085 0.0019

RU 0.0033 0.0048 0.0038 0.0225 0.135 0.0029

Kinetic Friction [Nm] Static Friction (Max) [Nm]

Joint RW RW-S OpenWrist RW RW-S OpenWrist

PS n/a n/a 0.1891 n/a (0.139) n/a (0.221) 0.2250 (0.3990)

FE n/a n/a 0.0541 n/a (0.109) n/a (0.198) 0.0720 (0.1042)

RU n/a n/a 0.1339 n/a (0.112) n/a (0.211) 0.1180 (0.1537)

Bandwidth [Hz]

Joint RW RW-S OpenWrist

PS 4.2 3.5 4.6

FE 13.3 6.0 7.0

RU 10.6 8.3 9.8
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Chapter 4

Validation as an Assessment Device

Often, rehabilitation robots that are used as training devices are also used as assess-

ment devices. Typically it is assumed that the robot has a negligible impact on the

measurements required to compute assessment metrics such as movement smoothness.

However, this has been shown to not always be true [1]. To validate a rehabilitation

robot as an assessment device, a direct comparison between movements performed in

the device and movements in a no-robot condition must be performed.

The chapter is divided into three separate studies. The first, a small single-subject

pilot study, compares velocity profiles between the OpenWrist and its predecessor, the

RiceWrist-S, to investigate the impact of the numerous design upgrades made (see

Chapter 2). The second study, a larger multi-subject study, compares metrics for

movement smoothness between robot and no-robot conditions in an effort to validate

the OpenWrist as an assessment device. Finally, the third study, similar in scope

to the second, seeks to understand what impact dynamic properties, particularly

inertia and friction, have on movement smoothness. I would like acknowledge my

collaborators Andrew Erwin, Josh Bradley, Chad Rose, and Claudia Kahn, each of

whom played an instrumental role in the two subject studies.∗

∗Portions of this chapter originally appeared in a paper submitted by Erwin, Pezent, Bradley

and O’Malley in April 2017 [52].
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4.1 Pilot Study: RiceWrist-S vs. OpenWrist in Wrist Point-

ing Velocity Profiles

A pilot investigation sought to compare the velocity profiles of wrist pointing move-

ments performed in both the OpenWrist and its predecessor, the RiceWrist-S. Given

the numerous design changes introduced to increase device transparency in the Open-

Wrist, one would expect smoother and more uniform velocity profiles in the Open-

Wrist. A single male subject was instructed to make wrist pointing movements along

the traditional anatomical axes (FE and RU) as well as in two ”diagonal” directions,

D1 and D2, that required coordinated movements along both the FE and RU axis.

It is important to note that D1 and D2 are not exactly midway between the FE and

RU axes; D1 is composed of slightly more FE movement, while D2 is composed of

slightly more RU movement. Twenty-four movements were performed along each of

the four axes. While the OpenWrist has the ability to recorded joint velocity directly

from encoders, the RiceWrist-S does not. Therefore, joint velocities for both robots

were estimated by taking the approximate derivative of joint positions and filtering

with a first-order Butterworth filter. The estimated velocity in the FE and RU axes

were used to calculate the task space tangential velocity of each movement. Veloci-

ties, normalized in both magnitude and duration, are shown in Fig. 4.1. Irrespective

of computing smoothness metrics, it is clear that the OpenWrist makes drastic im-

provements toward decreasing the device’s affect on wrist pointing smoothness. This

is especially true for the RU and D2 axes where the expected bell-shaped profile is

barely visible for the RiceWrist-S.
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Figure 4.1 : Velocity profiles for the RiceWrist-S (left) and OpenWrist (right) in the
four task-space directions tested.
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4.2 Subject Study A: Wrist Pointing Movements for Robot

vs. No Robot Conditions

The improvement of movement smoothness over the course of therapy is one of the

positive outcomes observed during robotic rehabilitation and is widely used as an

assessment metric for evaluating therapeutic progress. To validate a rehabilitation

robot as an accurate assessment device, a direct comparison between movements per-

formed with and without the robot must considered. In this section, two smoothness

metrics are evaluated in a no-robot and robot condition to see what impact the robot

has on these metrics. Since the no-robot condition obviously lacks the convenience of

robotic joint encoders, passive marker motion capture was used to record anatomical

joint angles for both the robot and no-robot conditions.

4.2.1 Methods

Subjects

Nine subjects (2 female, 7 male), ages 20-28 years old participated in the experiment.

All subjects were right hand dominant with no current injury or known history of neu-

romuscular injury in their wrist. Approval for the experiment was obtained through

the Rice University Institutional Review Board.

Task Description

The experiment consisted of two blocks. The task performed in both blocks was

identical except in the first block the subject performed the task in the no-robot

condition (Fig. 4.2-a), and in the second block the subject performed the task in the

robot condition (Fig. 4.2-b).
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Figure 4.2 : Conditions of subject study A. (a) Subject in the no-robot condition.
The forearm was secured through a rigid splint that could be compressed with a tied
lace. (b) Subject in the robot condition. The forearm is secured to the adjustable
forearm rest of the OpenWrist, itself secured to the platform below it.

Subjects performed a wrist pointing task, similar to the tasks presented in [46, 62].

The task required wrist pointing to nine targets – one centrally placed and 8 radially

placed, shown in Fig. 4.3. Starting at the central target, subjects were instructed to

reach an indicated outer target before a gate closed around it (as in Fig 4.3-b). Upon

reaching the outer target, the subject was then directed back to the central target,

and the process was repeated for a new outer target. Three sessions occurred: 1) a

practice session with 5 reaches per outer target, 2) a ”slow” (0.6 s gate closing time)

session with 15 reaches per outer target, and 3) a ”fast” (0.4 s gate closing time)

session with 15 reaches per outer target. Targets were presented in a pseudo-random

order, and subjects were instructed to pause on all targets for one second to improve

velocity based segmentation in post-processing.

While the visualization indicated an evenly spaced circular mapping, the true mapping

was chosen to reflect a constant portion of the ROM, not a constant angular distance

(see Fig. 4.4). Target locations were chosen by reducing the average wrist ROM

defined in [2] by 40% and distributing targets around the perimeter in 45◦ increments.

The robot was used purely in an underpowered backdrive mode.
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Figure 4.3 : The real-time visual display used during the task of subject study A.
The small black dot is the subject’s cursor and current position, and the large gray
dots are the targets. The subject moves to a new target when it turns green, at a
speed suggested by the closing of a rectangular gate around the target.
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Figure 4.4 : The presented joint angle visualization (left) and the actual joint angle
mapping (right) that was chosen to reflect a constant portion of the ROM. Target
locations were chosen by reducing the average wrist ROM defined in [2] by 40% and
distributing targets around the perimeter in 45◦increments.

Joint Angle Measurement

Anatomical wrist angles were measured with a six-camera Optitrack Flex V100R2

100 FPS motion capture system. Passive markers (3 mm and 11 mm) were used

to to create reference rigid bodies, one placed on the forearm, and another placed

on the dorsal side of the hand (Fig. 4.5). The algorithm given in [63] was used to
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estimate the anatomical wrist rotations. The algorithm takes the orientation of the

two rigid bodies relative to the motion capture world frame and estimates axes of

rotation based on calibrated single DOF movements. The orientation of the axis is

obtained by minimizing the integral

∆ω =
1

t

∫ t

0

(R1ω1 −R2ω2)
2dt (4.1)

where t is the time of the movement, R1 and R2 are the orientation of the rigid bodies

relative to the world frame, and ω1 and ω2 are the orientations of the axes relative to

the rigid bodies. Taking the partial derivative of 4.1 with respect to ω1 and ω2 the

linear system  I −
∫ t
0
RT

1R2dt

−
∫ t
0
RT

2R1dt 1


ω1

ω2

 = 0 (4.2)

The eigenvalue of the matrix in 4.2 with the smallest magnitude corresponds to the

axis orientation which minimizes the integral in 4.1. The other axis orientation is

obtained by repeating the process for another movement. Taking the cross prod-

uct of the resultant axes gives a third orthogonal axis, which is then crossed with

an anatomic axis to give the orthogonal set of anatomically inspired axes used to

determine wrist angles (see Fig. 4.6).

Data Analysis

Velocity Segmentation Anatomical joint angle measurements were filtered and

differentiated using a third-order Savitzky-Golay filter with a 21-sample (200ms) win-

dow [64]. Velocity data of the FE and RU axes were used to calculate the task space

tangential velocity of each movement. This velocity data was first trimmed using a

window larger than that of the expected movement time to account for variability in

subject’s movement timing. As in [46,62], these velocity profiles were then segmented
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by only keeping velocity starting and ending with the condition |v(t∗)| > 0.05 · |vmax|

where vmax is the maximum velocity for the movement.

Figure 4.5 : Two rigid bodies (red) defined by the motion capture markers.

FEa

RUa

FEr

RUr

RUa,p

Figure 4.6 : Illustration of the 3D calibrated, anatomically inspired axes. Anatom-
ical and robot axes are indicated with ‘a’ and ‘r’ subscripts, respectively, while the
orthogonally imposed anatomical RU axis is indicated with ‘a’. The axes used for
joint measurement are indicated by the solid black lines.
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Movement Smoothness From the segmented velocity, the movement smoothness

correlation coefficient ρ [65] was calculated as

ρ =
Σ[(vs − v̄s)(vmj − v̄mj)]√
Σ(vs − v̄s)2Σ(vmj − v̄mj)2

(4.3)

where vs is the subject’s tangential velocity, v̄ is the mean velocity, and vmj is the

minimum jerk trajectory given by

vmj = ∆
(30t4

T 5
− 60t3

T 4
+

30t2

T 3

)
. (4.4)

where t is time, ∆ is distance traveled, and T is duration of the movement. The

movement smoothness correlation coefficient takes values between 0 and 1, where

a value of 1 would indicate perfect correlation with the minimum jerk trajectory,

and a value of 0 would indicate no correlation. Occasionally, negative ρ values were

calculated (implying negative correlation) and were set to zero, as in [65].

In addition to ρ, another movement smoothness metric, spectral arc length (SAL)

[66], was calculated. The creators of SAL suggest that jerk-based smoothness metrics,

like ρ, lack validity, consistency, sensitivity, or robustness. Particularly, ρ has been

shown to be sensitive to noise and segmentation width. While ρ computes smooth-

ness in the time domain, SAL uses a movement speed profile’s Fourier magnitude

spectrum to quantify movement smoothness in the frequency domain. Specifically,

SAL is the negative arc length of the amplitude and frequency-normalized Fourier

magnitude spectrum of the speed profile. The intuition behind the metric is that

smoother movements should have more low-frequency components, while less smooth

movements should consist of higher frequency components. The metric is defined as

SAL , −
∫ ωc

0

√√√√( 1

ωc

)2

+

(
dV̂ (ω)

dω

)2

dω (4.5)
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V̂ (ω) ,
V (ω)

V (0)
(4.6)

where V (ω) is the Fourier magnitude of the speed profile v(t) and [0, ωc] is the fre-

quency band of the movement. To calculate SAL, a MATLAB function provided by

its creators was used with default settings. SAL takes on negative values, with less

negative values indicating smoother movements. The original authors have shown

that movements made by health subjects typically fall between −1.9 and −2.0, while

impaired subjects fall below −3.0. Preliminary stroke subject data from clinical trials

conducted by MAHI Lab members at TIRR Memorial Herman hospital suggests that

severely impaired subjects may have SAL values as low as −6.0.

4.2.2 Results

Fig. 4.7 shows a representative plot of the task space movement paths generated by

a single subject. Fig. 4.8 and Fig. 4.9 provide the mean normalize velocity profiles

with standard deviation for the slow and fast trials, respectively. Fig. 4.10 and Fig.

4.11 provide the mean smoothness correlation coefficient ρ for all subjects, separated

by target and condition, for the slow and fast sessions, respectively. Outbound and

inbound data have been combined. Likewise, Fig. 4.12 and Fig. 4.13 show SAL for

the slow and fast condition, with outbound and inbound data combined.



52

-20 -10 0 10 20
-20

-10

0

10

20

-20 -10 0 10 20
-20

-10

0

10

20

-20 -10 0 10 20
-20

-10

0

10

20

-20 -10 0 10 20
-20

-10

0

10

20

No Robot Robot

F
as

t
Sl

ow

Figure 4.7 : Representative plots of the task space movement paths generated by a
single subject. Units on the horizontal and vertical axes correspond with those in the
visualization (see Fig. 4.4).

4.2.3 Discussion

The data highlights the differences between movements performed in the robot con-

dition and the no-robot condition. For the the smoothness correlation coefficient ρ,

the robot made a major impact. Movements made in the presence of the OpenWrist

were considerably more correlated with the minimum jerk trajectory than those made

in the no-robot condition for both the the slow and fast sessions. Two important ob-

servations can be made. First, targets 1 and 5 for the robot condition are generally

the smoothest movements (based on the mean value) and also show the greatest in-

crease over the no-robot condition. These targets corresponds with movements which
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Figure 4.8 : Mean normalized velocity profiles with standard deviation for all subjects
during the slow trials.
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Figure 4.9 : Mean normalized velocity profiles with standard deviation for all subjects
during the fast trials.
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Figure 4.10 : The mean smoothness correlation coefficient, ρ, for all subjects during
the slow trials. Difference is defined as ρrobot − ρno robot. Error bars are for a 95%
confidence interval (1.96 times the standard error).

Figure 4.11 : The mean smoothness correlation coefficient, ρ, for all subjects during
the fast trials. Difference is defined as ρrobot − ρno robot. Error bars are for a 95%
confidence interval (1.96 times the standard error).
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Figure 4.12 : Spectral arc length for all subjects during the slow trials. Difference is
defined as SALrobot − SALno robot. Error bars are for a 95% confidence interval (1.96
times the standard error).

Figure 4.13 : Spectral arc length for all subjects during the fast trials. Difference is
defined as SALrobot − SALno robot. Error bars are for a 95% confidence interval (1.96
times the standard error).
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required the most motion on the second robot joint. Second, targets 3 and 7, those

which required the most motion on the third robot joint, are the least affected by the

robot. Observing Fig. 4.8 and Fig. 4.9, it can be seen that the mean velocity profiles

for the robot condition display curvature that is slightly more reminiscent of the min-

imum jerk profile (see Fig. 4.17 for example), with peak velocities occurring closer to

the half-way mark. Two conclusions could be drawn from these observations. First,

recall that joint 2’s inertia is approximately 10x larger than joint 3’s. It is possible

that the increased inertial load acts as a mechanical low-pass filter, have a smoothing

effect on the movement profile. This would agree with observations of wrist move-

ments in [67], where inertial loads tended to aid movements in following a minimum

jerk trajectory. The second possibility is that friction in the robot’s third joint, which

is higher due to its more complex cable routing mechanism, has a negative impact

on smoothness. This may explain why targets 3 and 7 do not experience the same

increase in smoothness as targets 1 and 5. This phenomenon is further investigate

in Section 4.3. One other observation that can be made for ρ is the high degree of

variability, denoted a relatively large confidence interval. This would agree with the

statements made [66], regarding the deficiencies of jerk based smoothness measures.

The bar plots for SAL paint a different picture – movements performed in robot

were not significantly different from movements performed outside of the robot. As

expected, there is also significantly less variability in SAL compared to ρ. The values

for SAL reported here, around -1.9 for most targets, agree with the values reported

in [66] for healthy subjects. In most cases, the robot condition is only slightly more

negative. Knowing that SAL can typically fall as low as -6 for stroke subjects, it

seems reasonable to conclude the the robot did not have a detrimental affect on SAL.

As such, the OpenWrist is validated as a measurement device when using this metric.



58

4.3 Subject Study B: The Effect of Robot Dynamics on Wrist

Pointing Smoothness

The results of the pilot study and first subject study made it clear that robot dynam-

ics, namely inertia and friction, had a direct impact on the movement smoothness

correlation coefficient, ρ, in wrist pointing tasks. Although movements are generally

robust to disturbances, certain perturbations might disrupt an individual’s ability to

produce these smooth movements. Whether a rehabilitation robot’s inherent dynam-

ics impact movement smoothness during pointing tasks has not yet been investigated.

To address this, a second subject study was conducted. This subject study involved

a similar pointing task as the first, but with robot, not anatomical, joint angles being

recorded under four different operating conditions.

4.3.1 Methods

Subjects

Seven subjects (2 female, 5 male), ages 21-27 years old participated in the experiment.

All subjects were right hand dominant with no current injury or known history of neu-

romuscular injury in their wrist. Approval for the experiment was obtained through

the Rice University Institutional Review Board.

Task Description

Subjects performed a wrist pointing task similar to subject study A, with joint angles

recorded by the OpenWrist. Wrist pointing movements, 25◦ in amplitude, were made

in the traditional anatomical axes (FE and RU) as well as two diagonal directions

(collectively referred to as D), similar to those in the preliminary investigation. How-



59

ever, these axes were aligned at ±45◦ from the horizontal axis in task space. Unlike

the first subject study, the mapping in this study was uniform in all directions. Sub-

jects performed wrist pointing movements in four different experiment blocks with

a new randomized condition in each block. A visual display consisting of a small

circular cursor which represented the subject’s wrist angle, a large central circular

target, and eight large outer circular targets on the perimeter, allowed the user to

visualize their position in the 2D coordinate space {φFE, φRU}. Each block started

with the subject’s cursor on the center target awaiting the first randomly selected

outer target to turn green, indicating the subject should move to that target. Each

target remained green for 0.85 seconds before turning red, indicating the movement

should be completed. Subjects were instructed to make the wrist pointing movements

in a single slashing motion at a speed fast enough to comfortably reach the target

before it turned red. The target remained red for 0.85 seconds, at which point the

center target would turn green indicating the user to return to the neutral wrist po-

sition. This procedure was then repeated for other randomly selected outer targets.

The time intervals were chosen so that the subject would move with purpose, but not

so fast as to become tired. A total of 128 movements, 16 being to each of the eight

targets, were performed per experimental block with (i.e. 32 each for FE and RU

axes, and 64 for D axes). Subjects were allowed 30 s of practice with each condition

before starting the block. The neutral orientation of the wrist was defined as the

robot being in a neutral orientation while the subject grasped the handle.

To assist subjects in staying on the desired axis of movement, specifically for diag-

onal movements, a virtual tunnel was implemented (see Fig. 4.14). The virtual tunnel

repelled movements into it, but did not provide any assistance along the desired axis.

The virtual tunnel consisted of virtual walls on either side of the movement axis with
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a virtual stiffness of 30 Nm
rad

and virtual damping of 0.5 Nm·s
rad

. FE and RU movements

were relatively easy for subjects to make straight movements; however, without the

tunnel, making straight multi-DOF off axis movements was very difficult due to fric-

tion being felt in both directions simultaneously from the device. Implementing a

virtual tunnel allowed subjects to focus on executing movements and not the distur-

bance forces which made it difficult to make straight and smooth movements to the

diagonal targets. The virtual tunnel was desirable for our experiment since we were

only interested in the wrist movement’s velocity profiles.

F E

R

U

D

D

D

D

Figure 4.14 : The real-time visual display of the user’s cursor (small orange circle)
and nine targets shown to subjects during the experiment (note text and dashed
lines shown here for reference only). In this trial, the diagonal target requiring an
equal combination of radial deviation and extension has turned green, indicating a
movement should be made to it. When a target becomes active, a virtual tunnel
is implemented (light blue) to aid the user in making movements along the desired
axis. The text next to the targets correspond to: extension (E), flexion (F), radial
(R) deviation, ulnar (U) deviation, and diagonal (D).
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Conditions

The experiment consisted of four blocks with four conditions (C1, C2, C3, and C4)

presented in a pseudo-random fashion to eliminate effects due to order of condition

presentation. All conditions contained the virtual tunnel, but C1 and C2 did not

contain any additional active interaction torques from the robot. In C1 the device

was used as intended with the subject’s wrist FE axis aligning with that of the robot’s

second joint axis and the subject’s wrist RU axis aligning with that of the robot’s

third joint (see Fig. 4.15-a). In C2 subjects pronated their forearm 90◦ so that their

wrist RU axis aligned with the robot’s second joint axis, and FE axis aligned with

that of the robot’s third joint axis (see Fig. 4.15-b). This condition was explored

since the robot’s third joint contained much more static and Coulomb friction than

the second joint (see Table. 3.6), allowing for the examination of the effects of the

robot’s dynamics on wrist motions for a given wrist movement direction. Note that

measurements reported later as RU-C2 refer to the subject’s RU movements being

measured on and by the robot’s FE joint and vice versa for subject FE movements.

Figure 4.15 : (Left) Subject’s neutral posture in conditions 1, 3 and 4 as determined
by the intended use of the robot. (Right) Subject’s neutral posture in condition 2
where wrist FE is aligned with joint 3, and RU is aligned with joint 2. A rotated grip
was used in this condition.
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In C3 and C4 subjects resumed normal forearm orientation as in C1, but the

device now provided extra assistance or resistance in an effort to reduce (C3) or

amplify (C4) perceived Coulomb friction, one of the main sources of interaction torque

reflected to the user. It was hypothesized that reducing the effects of Coulomb friction

would make movements smoother, especially those performed on the robot’s third

joint. Conversely, it was expected that exaggerating Coulomb friction would make

movements less smooth. Virtual Coulomb friction was applied separately to each

joint using a continuous Coulomb friction model

fc,a = fctanh(kθ̇) (4.7)

where fc,a is the applied Coulomb friction, fc the steady state Coulomb friction mag-

nitude, k defines how quickly the tanh function approaches steady state, and θ̇ is

the subject’s velocity on the given joint. In this experiment we used k = 0.8 and

fc = 75% of the device’s Coulomb friction values given in Table 3.6. In an effort

to remove gravity as a factor, simple gravity compensation was implemented on the

device’s RU joint, compensating for 75% of the device’s 11.5 N ·mm gravitational

torque in the neutral orientation. It should be noted that the device felt significantly

more transparent (especially on the device’s RU joint) with the compensatory control

action in C3, and felt significantly worse with the added Coulomb friction during C4.

Table 4.1 : Experimental Conditions for Subject Study B.

Virtual Tunnel FE Aligned With RU Aligned With Friction Modification

C1 Yes Joint 2 Joint 3 None

C2 Yes Joint 3 Joint 2 None

C3 Yes Joint 2 Joint 3 Compensated

C4 Yes Joint 2 Joint 3 Amplified
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Data Analysis

Velocity Segmentation Joint velocities were taken from Quarc software, which

estimates them by differentiating and passively filtering encoder positions. Move-

ments were segmented in the same manner as subject study A – at the beginning and

end of the movement when velocity crossed the 5% max movement velocity threshold.

Movement Smoothness As before in subject study A, the smoothness correlation

coefficient ρ was calculated for each movement using 4.3 and 4.4.

Statistical Analyses Statistical comparisons were made using Welch’s t-test for

all 18 possible comparisons of conditions within a given movement axis (FE, RU, and

D). Since eighteen tests were performed, the αc levels were adjusted using the false

discovery rate correction to account for the family-wise type I error inflation.

4.3.2 Results

Velocity data and corresponding movement smoothness, measured through the move-

ment smoothness correlation coefficient ρ, are presented for all movement directions

(FE, RU, and D), and conditions (C1, C2, C3, and C4). The data highlights the

differences in movement variability and smoothness for the movement directions and

conditions. A plot of the movement velocity profiles for wrist FE and RU movements

for all four conditions can be seen in Fig. 4.16. Time and amplitude are normalized

for visualization of variability in profiles, while the color of the plots highlights which

robot axis the movements were made on. Additionally, the average peak time, time

at maximum velocity, of each set of movements is shown on the plots to visualize how

movements were skewed depending on condition and movement direction.
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Figure 4.16 : Velocity profiles for FE and RU for all four conditions. For visualization,
movements were normalized with respect to time and amplitude. Movements made
on the robot’s second joint are in green, while movements made on the robot’s third
joint are in blue. The red dots indicate the average peak time for a given movement
direction and condition. For reference, a vertically dashed line is shown at t=0.5
which is the peak time for the minimum jerk trajectory.

Representative velocity profiles for C1 and the minimum jerk trajectory (included

for reference), can be seen in Fig. 4.17. This plot highlights the shape and skewness

of individual velocity profiles. The representative profiles were selected such that ρ

and peak time for the movement approximately matched that of the group mean for

that axis and condition.

The group mean ρ values for each axis and condition are presented in Table 4.2.

Comparison of group means for FE and RU movements with respect to robot axis

(C1 and C2) can be seen through a barplot in Fig. 4.18(a). A barplot comparing

conditions with human and robot axes traditionally aligned with no Coulomb Friction

compensation, compensation, and amplification (C1, C3, and C4) for FE and RU can

be seen in Fig. 4.18(b). Finally, a barplot comparing all conditions for diagonal
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Figure 4.17 : Plot of the minimum jerk trajectory against representative velocity
profiles from C1 for FE, RU, and D. Representative velocity profiles were selected
with ρ and peak time values approximately that of the group mean. Time and
amplitude were normalized for comparison purposes.

movements is presented in Fig. 4.19. An important note to make is that the values

for ρ presented here should not be compared with those in Fig. 4.10 and Fig. 4.11 due

to differences in joint angle measurement (motion capture based vs. encoder based),

sampling frequency (100 Hz vs. 1000 Hz), and differentiation and filtering methods.

Eighteen t-tests were performed examining the effect of condition (C1, C2, C3,

and C4) on ρ, along each axis. False discovery rate was applied to adjust the critical

α value from the 0.05 significance level. Significant differences were found in six of the

eighteen comparisons. In comparison between conditions one (C1: human and robot

aligned as intended, see Fig. 4.15) and two (C2: human axes rotated compared to
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Table 4.2 : Group Mean ρ Values for Subject Study B.

C1 C2 C3 C4

FE 0.971 0.865 0.971 0.964

RU 0.848 0.956 0.882 0.865

D 0.96 0.937 0.952 0.944

FE−C1 FE−C2 RUD−C1 RUD−C20.8

0.85

0.9

0.95

1

FE−C1 FE−C3 FE−C4 RUD−C1 RUD−C3 RUD−C40.8

0.85

0.9

0.95

1

ρ ρ

* *

(a) (b)

FE
RUD

Figure 4.18 : Movement smoothness correlation coefficient ρ for all FE and RU con-
ditions. Error bars are for a 95% confidence interval (1.96 times the standard error)
of all movements for a given condition and movement axis. Statistical significance is
indicated by *. (a) Comparison of C1 and C2. (b) Comparison of C1, C3, and C4.

robot axes as intended, i.e. human RU wrist movements performed and recorded by

the robot’s FE axis, see Fig. 4.15), a significant (t(4.7) = 7.5, p = 0.002, αc = 0.008)

difference was found between FE-C1 and FE-C2, and between RU-C1 and RU-C2

(t(4.6) = 9.8, p = 0.001, αc = 0.006). Comparisons involving conditions three (C3:

human and robot axes aligned with Coulomb friction compensation) and four (C4:

human and robot axes aligned with virtually added Coulomb friction) had significant

differences between FE-C2 and FE-C3 (t(4.8) = 7, p = 0.002, αc = 0.01), FE-C2 and

FE-C4 (t(4.5) = 6.8, p = 0.003, αc = 0.014), RU-C2 vs. RU-C3 (t(3.4) = 10.5, p =

0.006, αc = 0.02), and RU-C2 and RU-C4 (t(4.5) = 11, p = 0.0009, αc = 0.003).
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Figure 4.19 : Movement smoothness correlation coefficient ρ for all diagonal axes and
conditions. Error bars are for a 95% confidence interval (1.96 times the standard
error) of all movements for a given condition.

None of the other comparisons made were significant, and other than the comparison

between D-C1 vand D-C2 (p = 0.0496, αc = 0.019), all other comparisons were not

significant with p > 0.12.

4.3.3 Discussion

It was found that ρ is significantly different when the orientation of the hand is

changed with respect to the robot joints. In general, movements on the robot’s RU

axis were less smooth than movements made on the robot’s FE axis. The robot’s third

joint axis had more Coulomb friction than the second joint axis, but also substantially

less inertia (see Table 3.6). Without performing C2, one might arrive at the incorrect

conclusion that human RU movements made in the robot are less smooth than FE

ones. However, by performing C2, the only difference between C1 and C2 is which
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robot axis the human wrist axis was on, and thus this conclusion can no longer be

made.

Since Coulomb friction in the third joint was much larger than the second joint,

we hypothesized that compensating this friction might lead to smoother movements.

Although the robot felt much more transparent during C3, and not very transparent

during C4, this conclusion was rejected since there was no statistically significant

difference between any of the diagonal conditions. Since movements were not different

as a result of C3 or C4 for the diagonal movements, which were equally perturbed

by the robot’s second and third axes, we can conclude that the robot’s second axis

facilitates smoother movements than those on the robot’s third axis.

The discrepancy found in ρ between FE or RU C1 and C2 is likely a result of

non-linear phenomena related to static friction, which is impractical to compensate.

Compared to the robot’s second joint, the third axis requires a pulley routing mecha-

nism which creates additional friction. However, we can also observe that movements

on the robot’s second axis are extremely smooth and could be a result of the device’s

inertia. The device’s second axis inertia is significantly larger than that of the human

wrist while the device’s third axis inertia is comparable. This would agree with the

observations of subject study A. As a result, we cannot conclude that movements on

either axis are unaffected by the robot, but we can conclude that the robot does im-

pact movement smoothness. Additionally, the fact that C3 or C4 did not impact any

movement axis, means that Coulomb friction perturbations are not likely to impact

the central nervous system’s abilities to generate smooth movements. However, it is

likely that the neural control mechanism for smooth trajectory generation could not

adapt to static friction due to its erratic nature.

It is important to note that the values for inertia and friction here are representa-
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tive of other wrist rehabilitation robots (see Table 3.6), which are generally regarded

as highly transparent devices. However, it was found that although interaction torque

is much lower than that producible from a healthy subject, even moderate interaction

torques could impact an individual’s ability to produce smooth movements. In this

case, inertia of approximately 10x that of the wrist seemed to aid in generating very

smooth movements while static friction, on the order of 0.1 N ·mm, resulted in less

smooth movements. Where natural movement smoothness lies for wrist trajectories

cannot be inferred from this study and is left as future work. Given the seemingly

positive impact of inertia on movements, one might argue that actually the friction

on the RU joint was not a negative impact, and while this is possible, it is not enirely

likely since we found in the pilot study with the RW-S, which had larger friction in

the RU joint, resulted in even less smooth movements being made on that joint.

Future work should explore inertial compensation of the joint to see if that has

an impact on movement smoothness. Several studies have designed compensators

for inertia [68,69], although these are usually difficult to implement and can become

non-passive. In general it seems feasible to compensate for up to 50% of a device’s

inertia. Additionally, designers might take these results into account and attempt to

make lower inertia and lower friction joints than before. Another approach to this

issue could be to use direct force control as in [68], but it is also unknown how force

control would impact pointing movements.

Robotic devices have been used for several decades to study neural control during

pointing movements. However, it does not appear that attention has been paid to

how the robot impacts these movements. Robots certainly provide an excellent op-

portunity to study movements, especially when considering the high resolution and

repeatability that can be obtained using them when compared with less obtrusive
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means such as motion capture or inertial measurement units. However, we need to

carefully consider the role robots might play in influencing natural movements, even

when the device feels relatively transparent.
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Chapter 5

Conclusions

Robot-augmented therapy is a clinically verified path forward to improving rehabili-

tation outcomes for several neuromuscular conditions such as CVA and SCI. To date,

many devices for upper-extremity rehabilitation have been developed for both the

wrist and hand, separately. However, few, if any, devices have been developed for

coordinated hand-wrist therapy. This oversight fails to recognize the kinematic and

dynamic linkings of the hand and wrist that arise from their interconnect musculature,

as well as their position-dependent passive properties. To this end, a new coordinated

hand-wrist exoskeleton, the READAPT, has been proposed, and the wrist module,

the OpenWrist, has been developed.

The OpenWrist, leveraging over a decade of experience in upper-extremity ex-

oskeleton development, has been designed to address all of the requirements previ-

ously outlined for coordinated hand-wrist exoskeletons. Torque output and ROM

exceed requirements for ADL, and match or exceed reported values of most other ex-

isting devices, as shown in Table 2.4. Compared with its predecessor, the RiceWrist-S,

a number of functional improvements have been introduced. The PS joint has been

changed from an enclosed design to an open design, eliminating the need for users

to insert their arm into the device, while an adjustable foam padded elbow support

addresses ergonomic downfalls of previous devices. In a standalone wrist-only mode,

the OpenWrist introduces a new angled grip that increases practical workspace by

51%. Small, but important additions such as integrated tensioning mechanisms and
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a motion capture compatible coating further enhance its effectiveness in clinical and

research settings

Characterization of the OpenWrist underscores the significance of the numerous

design changes made. Compared with the RiceWrist-S, inertia reductions of 12% and

21% are achieved in the FE and RU joints, respectively, as a result of lower weight

components and strategically placed actuators. Hybrid-ceramic ball bearings and

improved capstan-cable windings contribute to decreases in maximum static friction

by 47% in FE and 27% in RU. Kinetic friction values measured for the OpenWrist

consume a maximum of only 6% of the continuous torque output in any joint. Closed-

loop position bandwidth is increased over the RiceWrist-S across the board and either

exceeds or is slightly less than the 5 Hz achievable by humans in uncontrolled motions.

Multiple subject studies involving healthy individuals indicate that spectral arc

length, a commonly used movement smoothness metric for assessing motor skill re-

covery, is largely unaffected by the OpenWrist. As such, the OpenWrist is validated

as an accurate assessment device for stroke and SCI. Furthermore, this thesis has

shown that the movement smoothness correlation coefficient, ρ, is affected by robot

dynamics, namely inertia and friction, and is likely not an accurate smoothness metric

for assessment with rehabilitative robots.

Future work will involve the integration of the OpenWrist and the ReNue Maestro

hand-exoskeleton, both mechanically and through software, in an effort to realize a

fully operational iteration of the READAPT project. The coupling will result in one

of, if not the first coordinated hand-wrist exoskeletal devices, opening several exciting

avenues for future research. Additionally, the OpenWrist platform will continue to

evolve, as the next version, the OpenWrist-Lite, is already under development.
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Appendix A

OpenWrist Kinematic and Dynamic Equations

This appendix chapter provides the MATLAB code needed to generate the forward

kinematics and dynamic equations of motion symbolically for the OpenWrist (see

Sections 2.2 and 2.3 for more detail). The code makes use of a few generic robotics

functions I previously wrote for class projects, and as such could be used for other

robotic manipulators if desired.

The main script for generating the forward kinematics and equations of motions

is provided first, followed by the required functions DH2TF, NewtonEuler, and

SeparateMVG. The symbolic output of the matrix M and the vectors V and G

is provided last in a format that can copied and pasted into most programming

languages (you’re welcome, future MAHI grad student).



74

% Evan Pezent | evanpezent.com | epezent@rice.edu 

% 02/04/2017 

  

% ========================================================================= 

% This script computes the OpenWrist dynamic equations symbolically using 

% the Newton-Euler approach, and rearranges all terms in the form: 

% Tau = M(Q)Q" + V(Q,Q') + G(Q) + B.*Q' + Fk.*sign(Q') 

% ========================================================================= 

  

%% Define Symbolic Symbols 

syms tau1 q1 q1d q1dd m1 b1 fk1 ... 

    tau2 q2 q2d q2dd m2 b2 fk2 ... 

    tau3 q3 q3d q3dd m3 b3 fk3 ... 

    Pc1x Pc1y Pc1z   Ic1xx Ic1xy Ic1xz Ic1yy Ic1yz Ic1zz ... 

    Pc2x Pc2y Pc2z   Ic2xx Ic2xy Ic2xz Ic2yy Ic2yz Ic2zz ... 

    Pc3x Pc3y Pc3z   Ic3xx Ic3xy Ic3xz Ic3yy Ic3yz Ic3zz ... 

    g 

  

Tau = [tau1; tau2; tau3]; 

  

Q = [q1;q2;q3]; 

Qd = [q1d;q2d;q3d]; 

Qdd = [q1dd;q2dd;q3dd]; 

  

B = [b1;b2;b3]; 

Fk = [fk1;fk2;fk3]; 

  

Pc1 = [Pc1x Pc1y Pc1z].'; 

Pc2 = [Pc2x Pc2y Pc2z].'; 

Pc3 = [Pc3x Pc3y Pc3z].'; 

  

Ic1 = [Ic1xx -Ic1xy -Ic1xz; 

    -Ic1xy Ic1yy -Ic1yz; 

    -Ic1xz -Ic1yz Ic1xx]; 

  

Ic2 = [Ic2xx -Ic2xy -Ic2xz; 

    -Ic2xy Ic2yy -Ic2yz; 

    -Ic2xz -Ic2yz Ic2xx]; 

  

Ic3 = [Ic3xx -Ic3xy -Ic3xz; 

    -Ic3xy Ic3yy -Ic3yz; 

    -Ic3xz -Ic3yz Ic3xx]; 

  

%% Forward Kinematics 

DH_table = [0 0 0 q1; 

    0 pi/2 0 q2-pi/2; 

    0 pi/2 0 q3]; 

  

[~,T_array] = DH2TF(DH_table); 

  

%% Newton-Euler Dynamics 

m = [m1;m2;m3]; 

Pc = {Pc1 Pc2 Pc3}; 

Ic = {Ic1 Ic2 Ic3}; 

g0 = [0; g; 0]; 

MVG = NewtonEuler(m,Pc,Ic,T_array,Qd,Qdd,g0); 

MVG = simplify(expand(MVG)); 

  

%% Separate MVG into M, V, and G 

[M,V,G] = SeparateMVG(MVG,Qdd,g); 

  

%% Get Equation of Motion 

EOM = Tau == M*Qdd + V + G + B.*Qd + Fk.*sign(Qd); 
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% Evan Pezent | evanpezent.com | epezent@rice.edu 

% 02/11/2016 

  

function [T_end,T_array] = DH2TF(DH_table) 

% ========================================================================= 

% Accepts an Nx4 matrix with rows of the form [a alpha d theta] which 

% correspond to the DH parameters of subsequent frames. The first row 

% should be frame 1, the second row frame 2, and so on so forth until the 

% final frame i. Returns the transformation from frame N to 0, and an 

% N-array of transformations each describing frame i relative to frame i-1, 

% i.e. mapping i to i-1. 

% ========================================================================= 

% Source: Introduction to Robotics: Mechanics and Control (3e) - Craig, J. 

% Eqns: 3.6 (pg. 75) 

% ========================================================================= 

 

T_array = cell(1,size(DH_table,1)); 

T_end = eye(4); 

  

for ii = 1:size(DH_table,1) 

    a = DH_table(ii,1); 

    alpha = DH_table(ii,2); 

    d = DH_table(ii,3); 

    theta = DH_table(ii,4); 

    sinTheta = sin(theta); 

    cosTheta = cos(theta); 

    sinAlpha = sin(alpha); 

    cosAlpha = cos(alpha); 

    T = [cosTheta -sinTheta 0 a; 

        sinTheta*cosAlpha cosTheta*cosAlpha -sinAlpha -sinAlpha*d; 

        sinTheta*sinAlpha cosTheta*sinAlpha cosAlpha cosAlpha*d; 

        0 0 0 1]; 

    T_array{ii} = T; 

    T_end = T_end*T; 

end 

  

end 
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% Evan Pezent | evanpezent.com | epezent@rice.edu 

% 02/04/2017 

  

function [Tau,w,wd,vd,vcd,F,N,f,n] = NewtonEuler(m,Pc,Ic,T_array,Qd,Qdd,g0) 

% ========================================================================= 

% Computes the dynamic equations of motion for a rotational robotic  

% manipulator using the iterative Newton-Euler formulation. 

% 

% m = [n x 1] vector or link masses  

% Pc = n length cell array of [3 x 1] translations from {i} to {c_i}  

% Ic = n length cell array of [3 x 3] inertia tensors take about {c_i} 

% T_array = T_array as obtained from function DH2TF(DH_table) 

% Qd = [n x 1] vector of joint angular velocities 

% Qdd = [n x 1] vector of joint angular accelerations 

% g0 = [3 x 1] gravity vector in {0}.  

% 

% where 

% 

% {i} is the frame attached to link i 

% {c_i} is the frame at the COM of link i with the same orientation as {i} 

% ========================================================================= 

% Source: Introduction to Robotics: Mechanics and Control (3e) - Craig, J. 

% Eqns: 6.45 - 6.53 (pg. 176) 

% ========================================================================= 

  

num = length(m); 

  

% Pad vectors for notation consistency 

m = [0; m]; 

Pc = [0 Pc]; 

Ic = [0 Ic]; 

Qd = [0; Qd]; 

Qdd = [0; Qdd]; 

  

% Local X vector 

Z = [0; 0; 1]; 

  

% Frame 0 Variables 

w{1} = [0 0 0].'; 

wd{1}= [0 0 0].'; 

  

% Gravity Orientation 

% "The effect of gravity loading on the links can be included quite simply  

% by setting vd0 = G, where G has the magnitude of the gravity vector but  

% points in the opposite direction. This is equivalent to saying that the  

% base of the robot is accelerating upward with 1 g acceleration. This  

% fictitious upward acceleration causes exactly the same effect on the  

% links as gravity would." - pg. 176 

G = -g0;  

vd{1} = G; 

  

%% Outward Iterations 

for i = 1:num % 0 -> n-1 

    R        = T_array{i}(1:3,1:3).'; % ^i+1_i R 

    P        = T_array{i}(1:3,4); % ^i P_i+1 

    w{i+1}   = R*w{i} + Qd(i+1)*Z; % 6.45 

    wd{i+1}  = R*wd{i} + cross(R*w{i},Qd(i+1)*Z) + Qdd(i+1)*Z; % 6.46 

    vd{i+1}  = R*(cross(wd{i},P) + cross(w{i},cross(w{i},P)) + vd{i}); % 6.47 

    vcd{i+1} = cross(wd{i+1},Pc{i+1}) + cross(w{i+1},cross(w{i+1},Pc{i+1})) + 

vd{i+1}; % 6.48 

    F{i+1}   = m(i+1)*vcd{i+1}; % 6.49 

    N{i+1}   = Ic{i+1}*wd{i+1} + cross(w{i+1},Ic{i+1}*w{i+1}); % 6.50 

end 
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%% Inward Iterations 

for i = num+1:-1:2 % n -> 1 

    if i == num+1 

        f{i} = F{i}; % 6.51 

        n{i} = N{i} + cross(Pc{i},F{i}); % 6.52 

    else 

        R = T_array{i}(1:3,1:3); 

        P = T_array{i}(1:3,4); 

        f{i} = R*f{i+1} + F{i}; % 6.51 

        n{i} = N{i} + R*n{i+1} + cross(Pc{i},F{i}) + cross(P,R*f{i+1}); % 6.52 

    end 

    Tau(i,1) = n{i}.'*Z; % 6.53 

end 

  

%% Clean up elements related to 0th frame 

Tau(1) = [];   

w(:,1) = []; 

wd(:,1) = []; 

vd(:,1) = []; 

vcd(:,1) = []; 

F(:,1) = []; 

N(:,1) = []; 

f(:,1) = []; 

n(:,1) = [];        

         

end 
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% Evan Pezent | evanpezent.com | epezent@rice.edu 

% 02/11/2016 

  

function [M,V,G] = SeparateMVG(MVG,Qdd,g) 

% ========================================================================= 

% Extracts the mass matrix M, the vector of centrifugal and Coriolis terms 

% V, and the vector of gravity terms G from the clumped symbolic expression 

% MVG. Qdd is the [n x 1] vector of joint accelerations and g is gravity. 

% ========================================================================= 

  

n = length(MVG); 

  

% Extract M 

for i = 1:n 

    mvg = MVG(i); 

    for j = 1:n 

        m_temp = char(collect(mvg,Qdd(j))); 

        ind = strfind(m_temp,char(Qdd(j))); 

        if length(ind) < 2 

            m = m_temp(1:ind-2);             

            M(i,j) = simplify(expand(evalin('base',m))); 

        else 

            error(['Could not collect ' char(Qdd(j)) '.']) 

        end 

    end 

end 

  

% Reduce MVG to VG 

VG = simplify(expand(MVG - M*Qdd)); 

for i = 1:n 

    vg = VG(i); 

    g_temp = char(collect(vg,g)); 

    ind = strfind(g_temp,char(g)); 

    if length(ind) < 2 

        g_i = g_temp(1:ind-2); 

    else 

        error(['Could not collect ' char(g) '.']) 

    end 

    G(i,1) = simplify(expand(evalin('base',g_i)))*g; 

end 

  

% Reduce VG to V 

V = simplify(expand(VG-G)); 

  

end 
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M(1,1) = 

Ic1xx + Ic3xx + Ic2yy + Pc1x^2*m1 + Pc1y^2*m1 + Pc2x^2*m2 + Pc3x^2*m3 + Pc2z^2*m2 + 

Pc3y^2*m3 + Ic2xx*cos(q2)^2 - Ic3xx*cos(q2)^2 - Ic2yy*cos(q2)^2 + Ic3yy*cos(q2)^2 + 

Ic2xy*sin(2*q2) + Ic3xx*cos(q2)^2*cos(q3)^2 - Ic3yy*cos(q2)^2*cos(q3)^2 - 

Pc2x^2*m2*cos(q2)^2 + Pc2y^2*m2*cos(q2)^2 - Pc3y^2*m3*cos(q2)^2 + 

Pc3z^2*m3*cos(q2)^2 - 2*Ic3xz*cos(q2)*cos(q3)*sin(q2) + 

2*Ic3yz*cos(q2)*sin(q2)*sin(q3) + 2*Ic3xy*cos(q2)^2*cos(q3)*sin(q3) + 

Pc2x*Pc2y*m2*sin(2*q2) - Pc3x^2*m3*cos(q2)^2*cos(q3)^2 + 

Pc3y^2*m3*cos(q2)^2*cos(q3)^2 + 2*Pc3y*Pc3z*m3*cos(q2)*sin(q2)*sin(q3) + 

2*Pc3x*Pc3y*m3*cos(q2)^2*cos(q3)*sin(q3) - 2*Pc3x*Pc3z*m3*cos(q2)*cos(q3)*sin(q2) 

M(1,2) =  

Ic2xz*cos(q2) - Ic3xy*cos(q2) - Ic2yz*sin(q2) + Ic3yz*cos(q3)*sin(q2) + 

Ic3xz*sin(q2)*sin(q3) + 2*Ic3xy*cos(q2)*cos(q3)^2 - Ic3xx*cos(q2)*cos(q3)*sin(q3) + 

Ic3yy*cos(q2)*cos(q3)*sin(q3) + Pc2x*Pc2z*m2*cos(q2) - Pc3x*Pc3y*m3*cos(q2) - 

Pc2y*Pc2z*m2*sin(q2) + Pc3x^2*m3*cos(q2)*cos(q3)*sin(q3) - 

Pc3y^2*m3*cos(q2)*cos(q3)*sin(q3) + Pc3y*Pc3z*m3*cos(q3)*sin(q2) + 

Pc3x*Pc3z*m3*sin(q2)*sin(q3) + 2*Pc3x*Pc3y*m3*cos(q2)*cos(q3)^2 

M(1,3) =  

- m3*sin(q2)*Pc3x^2 + Pc3z*m3*cos(q2)*cos(q3)*Pc3x - m3*sin(q2)*Pc3y^2 - 

Pc3z*m3*cos(q2)*sin(q3)*Pc3y - Ic3xx*sin(q2) + Ic3xz*cos(q2)*cos(q3) - 

Ic3yz*cos(q2)*sin(q3) 

M(2,1) = 

Ic2xz*cos(q2) - Ic3xy*cos(q2) - Ic2yz*sin(q2) + Ic3yz*cos(q3)*sin(q2) + 

Ic3xz*sin(q2)*sin(q3) + 2*Ic3xy*cos(q2)*cos(q3)^2 - Ic3xx*cos(q2)*cos(q3)*sin(q3) + 

Ic3yy*cos(q2)*cos(q3)*sin(q3) + Pc2x*Pc2z*m2*cos(q2) - Pc3x*Pc3y*m3*cos(q2) - 

Pc2y*Pc2z*m2*sin(q2) + Pc3x^2*m3*cos(q2)*cos(q3)*sin(q3) - 

Pc3y^2*m3*cos(q2)*cos(q3)*sin(q3) + Pc3y*Pc3z*m3*cos(q3)*sin(q2) + 

Pc3x*Pc3z*m3*sin(q2)*sin(q3) + 2*Pc3x*Pc3y*m3*cos(q2)*cos(q3)^2 

M(2,2) =  

Ic2xx + Ic3xx + Pc2x^2*m2 + Pc2y^2*m2 + Pc3y^2*m3 + Pc3z^2*m3 - Ic3xx*cos(q3)^2 + 

Ic3yy*cos(q3)^2 - Ic3xy*sin(2*q3) + Pc3x^2*m3*cos(q3)^2 - Pc3y^2*m3*cos(q3)^2 - 

Pc3x*Pc3y*m3*sin(2*q3) 

M(2,3) =  

- Ic3yz*cos(q3) - Ic3xz*sin(q3) - Pc3y*Pc3z*m3*cos(q3) - Pc3x*Pc3z*m3*sin(q3) 

M(3,1) =  

- m3*sin(q2)*Pc3x^2 + Pc3z*m3*cos(q2)*cos(q3)*Pc3x - m3*sin(q2)*Pc3y^2 - 

Pc3z*m3*cos(q2)*sin(q3)*Pc3y - Ic3xx*sin(q2) + Ic3xz*cos(q2)*cos(q3) - 

Ic3yz*cos(q2)*sin(q3) 

M(3,2) = 

- Ic3yz*cos(q3) - Ic3xz*sin(q3) - Pc3y*Pc3z*m3*cos(q3) - Pc3x*Pc3z*m3*sin(q3) 

M(3,3) =  

m3*Pc3x^2 + m3*Pc3y^2 + Ic3xx 
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V(1,1) =  

Ic3xy*q2d^2*sin(q2) - Ic2xz*q2d^2*sin(q2) - Ic2yz*q2d^2*cos(q2) - 2*Ic2xy*q1d*q2d + 

Ic3yz*q2d^2*cos(q2)*cos(q3) - Ic3yz*q3d^2*cos(q2)*cos(q3) + 

Ic3xz*q2d^2*cos(q2)*sin(q3) - Ic3xz*q3d^2*cos(q2)*sin(q3) + 2*Ic3xz*q1d*q2d*cos(q3) 

- Ic3yy*q2d*q3d*cos(q2) - 2*Ic3yz*q1d*q2d*sin(q3) - 2*Ic3xy*q2d^2*cos(q3)^2*sin(q2) 

+ 4*Ic2xy*q1d*q2d*cos(q2)^2 - 2*Ic3xy*q1d*q3d*cos(q2)^2 - Ic2xx*q1d*q2d*sin(2*q2) + 

Ic3xx*q1d*q2d*sin(2*q2) + Ic2yy*q1d*q2d*sin(2*q2) - Ic3yy*q1d*q2d*sin(2*q2) - 

Pc2y*Pc2z*m2*q2d^2*cos(q2) + Ic3xx*q2d^2*cos(q3)*sin(q2)*sin(q3) - 

Ic3yy*q2d^2*cos(q3)*sin(q2)*sin(q3) - Pc2x*Pc2z*m2*q2d^2*sin(q2) + 

Pc3x*Pc3y*m3*q2d^2*sin(q2) - 2*Pc3x^2*m3*q2d*q3d*cos(q2) - 2*Pc2x*Pc2y*m2*q1d*q2d - 

2*Ic3xx*q2d*q3d*cos(q2)*cos(q3)^2 - 4*Ic3xz*q1d*q2d*cos(q2)^2*cos(q3) + 

2*Ic3yy*q2d*q3d*cos(q2)*cos(q3)^2 + Pc2x^2*m2*q1d*q2d*sin(2*q2) - 

Pc2y^2*m2*q1d*q2d*sin(2*q2) + Pc3y^2*m3*q1d*q2d*sin(2*q2) - 

Pc3z^2*m3*q1d*q2d*sin(2*q2) + 4*Ic3yz*q1d*q2d*cos(q2)^2*sin(q3) + 

4*Ic3xy*q1d*q3d*cos(q2)^2*cos(q3)^2 - 4*Ic3xy*q2d*q3d*cos(q2)*cos(q3)*sin(q3) + 

2*Ic3yz*q1d*q3d*cos(q2)*cos(q3)*sin(q2) + 2*Pc3x*Pc3z*m3*q1d*q2d*cos(q3) + 

2*Ic3xz*q1d*q3d*cos(q2)*sin(q2)*sin(q3) - 2*Pc3y*Pc3z*m3*q1d*q2d*sin(q3) - 

2*Pc3x*Pc3y*m3*q2d^2*cos(q3)^2*sin(q2) + 2*Pc3x^2*m3*q2d*q3d*cos(q2)*cos(q3)^2 - 

2*Pc3y^2*m3*q2d*q3d*cos(q2)*cos(q3)^2 - 2*Ic3xx*q1d*q2d*cos(q2)*cos(q3)^2*sin(q2) - 

2*Ic3xx*q1d*q3d*cos(q2)^2*cos(q3)*sin(q3) + 

2*Ic3yy*q1d*q2d*cos(q2)*cos(q3)^2*sin(q2) + 

2*Ic3yy*q1d*q3d*cos(q2)^2*cos(q3)*sin(q3) + 4*Pc2x*Pc2y*m2*q1d*q2d*cos(q2)^2 - 

2*Pc3x*Pc3y*m3*q1d*q3d*cos(q2)^2 + Pc3y*Pc3z*m3*q2d^2*cos(q2)*cos(q3) - 

Pc3y*Pc3z*m3*q3d^2*cos(q2)*cos(q3) - Pc3x^2*m3*q2d^2*cos(q3)*sin(q2)*sin(q3) + 

Pc3y^2*m3*q2d^2*cos(q3)*sin(q2)*sin(q3) + Pc3x*Pc3z*m3*q2d^2*cos(q2)*sin(q3) - 

Pc3x*Pc3z*m3*q3d^2*cos(q2)*sin(q3) + 2*Pc3x^2*m3*q1d*q2d*cos(q2)*cos(q3)^2*sin(q2) - 

2*Pc3y^2*m3*q1d*q2d*cos(q2)*cos(q3)^2*sin(q2) + 

2*Pc3x^2*m3*q1d*q3d*cos(q2)^2*cos(q3)*sin(q3) - 

2*Pc3y^2*m3*q1d*q3d*cos(q2)^2*cos(q3)*sin(q3) - 

4*Pc3x*Pc3z*m3*q1d*q2d*cos(q2)^2*cos(q3) + 4*Pc3y*Pc3z*m3*q1d*q2d*cos(q2)^2*sin(q3) 

+ 4*Pc3x*Pc3y*m3*q1d*q3d*cos(q2)^2*cos(q3)^2 - 

4*Ic3xy*q1d*q2d*cos(q2)*cos(q3)*sin(q2)*sin(q3) - 

4*Pc3x*Pc3y*m3*q2d*q3d*cos(q2)*cos(q3)*sin(q3) + 

2*Pc3y*Pc3z*m3*q1d*q3d*cos(q2)*cos(q3)*sin(q2) + 

2*Pc3x*Pc3z*m3*q1d*q3d*cos(q2)*sin(q2)*sin(q3) - 

4*Pc3x*Pc3y*m3*q1d*q2d*cos(q2)*cos(q3)*sin(q2)*sin(q3) 
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V(2,1) =  

Ic2xy*q1d^2 - Ic3xz*q1d^2*cos(q3) - Ic3xz*q3d^2*cos(q3) + Ic3yz*q1d^2*sin(q3) + 

Ic3yz*q3d^2*sin(q3) + 2*Ic3xy*q2d*q3d - 2*Ic2xy*q1d^2*cos(q2)^2 + 

(Ic2xx*q1d^2*sin(2*q2))/2 - (Ic3xx*q1d^2*sin(2*q2))/2 - (Ic2yy*q1d^2*sin(2*q2))/2 + 

(Ic3yy*q1d^2*sin(2*q2))/2 + Pc2x*Pc2y*m2*q1d^2 + 2*Ic3xx*q1d*q3d*cos(q2) - 

Ic3yy*q1d*q3d*cos(q2) + 2*Ic3xz*q1d^2*cos(q2)^2*cos(q3) - 

(Pc2x^2*m2*q1d^2*sin(2*q2))/2 + (Pc2y^2*m2*q1d^2*sin(2*q2))/2 - 

(Pc3y^2*m3*q1d^2*sin(2*q2))/2 + (Pc3z^2*m3*q1d^2*sin(2*q2))/2 - 

2*Ic3yz*q1d^2*cos(q2)^2*sin(q3) - 4*Ic3xy*q2d*q3d*cos(q3)^2 + 

Ic3xx*q2d*q3d*sin(2*q3) - Ic3yy*q2d*q3d*sin(2*q3) - Pc3x*Pc3z*m3*q1d^2*cos(q3) - 

Pc3x*Pc3z*m3*q3d^2*cos(q3) + Pc3y*Pc3z*m3*q1d^2*sin(q3) + Pc3y*Pc3z*m3*q3d^2*sin(q3) 

+ 2*Pc3y^2*m3*q1d*q3d*cos(q2) + 2*Ic3xz*q1d*q3d*cos(q3)*sin(q2) + 

2*Pc3x*Pc3y*m3*q2d*q3d - 2*Ic3yz*q1d*q3d*sin(q2)*sin(q3) + 

Ic3xx*q1d^2*cos(q2)*cos(q3)^2*sin(q2) - Ic3yy*q1d^2*cos(q2)*cos(q3)^2*sin(q2) - 

2*Pc2x*Pc2y*m2*q1d^2*cos(q2)^2 - 2*Ic3xx*q1d*q3d*cos(q2)*cos(q3)^2 + 

2*Ic3yy*q1d*q3d*cos(q2)*cos(q3)^2 - Pc3x^2*m3*q2d*q3d*sin(2*q3) + 

Pc3y^2*m3*q2d*q3d*sin(2*q3) - 4*Ic3xy*q1d*q3d*cos(q2)*cos(q3)*sin(q3) - 

Pc3x^2*m3*q1d^2*cos(q2)*cos(q3)^2*sin(q2) + 

Pc3y^2*m3*q1d^2*cos(q2)*cos(q3)^2*sin(q2) + 2*Pc3x*Pc3z*m3*q1d^2*cos(q2)^2*cos(q3) - 

2*Pc3y*Pc3z*m3*q1d^2*cos(q2)^2*sin(q3) + 2*Pc3x^2*m3*q1d*q3d*cos(q2)*cos(q3)^2 - 

2*Pc3y^2*m3*q1d*q3d*cos(q2)*cos(q3)^2 - 4*Pc3x*Pc3y*m3*q2d*q3d*cos(q3)^2 + 

2*Ic3xy*q1d^2*cos(q2)*cos(q3)*sin(q2)*sin(q3) + 

2*Pc3x*Pc3z*m3*q1d*q3d*cos(q3)*sin(q2) - 2*Pc3y*Pc3z*m3*q1d*q3d*sin(q2)*sin(q3) + 

2*Pc3x*Pc3y*m3*q1d^2*cos(q2)*cos(q3)*sin(q2)*sin(q3) - 

4*Pc3x*Pc3y*m3*q1d*q3d*cos(q2)*cos(q3)*sin(q3) 

V(3,1) =  

Ic3xy*q1d^2*cos(q2)^2 - Ic3xy*q2d^2 + 2*Ic3xy*q2d^2*cos(q3)^2 - 

(Ic3xx*q2d^2*sin(2*q3))/2 + (Ic3yy*q2d^2*sin(2*q3))/2 - Pc3x*Pc3y*m3*q2d^2 - 

2*Ic3xx*q1d*q2d*cos(q2) + Ic3yy*q1d*q2d*cos(q2) + (Pc3x^2*m3*q2d^2*sin(2*q3))/2 - 

(Pc3y^2*m3*q2d^2*sin(2*q3))/2 - 2*Ic3xy*q1d^2*cos(q2)^2*cos(q3)^2 - 

Ic3yz*q1d^2*cos(q2)*cos(q3)*sin(q2) - Ic3xz*q1d^2*cos(q2)*sin(q2)*sin(q3) - 

2*Pc3y^2*m3*q1d*q2d*cos(q2) - 2*Ic3xz*q1d*q2d*cos(q3)*sin(q2) + 

2*Ic3yz*q1d*q2d*sin(q2)*sin(q3) + Ic3xx*q1d^2*cos(q2)^2*cos(q3)*sin(q3) - 

Ic3yy*q1d^2*cos(q2)^2*cos(q3)*sin(q3) + Pc3x*Pc3y*m3*q1d^2*cos(q2)^2 + 

2*Pc3x*Pc3y*m3*q2d^2*cos(q3)^2 + 2*Ic3xx*q1d*q2d*cos(q2)*cos(q3)^2 - 

2*Ic3yy*q1d*q2d*cos(q2)*cos(q3)^2 + 4*Ic3xy*q1d*q2d*cos(q2)*cos(q3)*sin(q3) - 

Pc3x^2*m3*q1d^2*cos(q2)^2*cos(q3)*sin(q3) + 

Pc3y^2*m3*q1d^2*cos(q2)^2*cos(q3)*sin(q3) - 2*Pc3x^2*m3*q1d*q2d*cos(q2)*cos(q3)^2 + 

2*Pc3y^2*m3*q1d*q2d*cos(q2)*cos(q3)^2 - 2*Pc3x*Pc3y*m3*q1d^2*cos(q2)^2*cos(q3)^2 - 

2*Pc3x*Pc3z*m3*q1d*q2d*cos(q3)*sin(q2) + 2*Pc3y*Pc3z*m3*q1d*q2d*sin(q2)*sin(q3) - 

Pc3y*Pc3z*m3*q1d^2*cos(q2)*cos(q3)*sin(q2) - 

Pc3x*Pc3z*m3*q1d^2*cos(q2)*sin(q2)*sin(q3) + 

4*Pc3x*Pc3y*m3*q1d*q2d*cos(q2)*cos(q3)*sin(q3) 
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G(1,1) = 

-g*(Pc2z*m2*sin(q1) - Pc1y*m1*sin(q1) + Pc1x*m1*cos(q1) + Pc2y*m2*cos(q1)*cos(q2) - 

Pc3z*m3*cos(q1)*cos(q2) + Pc2x*m2*cos(q1)*sin(q2) + Pc3y*m3*cos(q3)*sin(q1) + 

Pc3x*m3*sin(q1)*sin(q3) + Pc3x*m3*cos(q1)*cos(q3)*sin(q2) - 

Pc3y*m3*cos(q1)*sin(q2)*sin(q3)) 

G(2,1) =  

-g*sin(q1)*(Pc3z*m3*sin(q2) - Pc2y*m2*sin(q2) + Pc2x*m2*cos(q2) + 

Pc3x*m3*cos(q2)*cos(q3) - Pc3y*m3*cos(q2)*sin(q3)) 

G(3,1) =  

g*(Pc3x*m3*cos(q1)*cos(q3) - Pc3y*m3*cos(q1)*sin(q3) + 

Pc3y*m3*cos(q3)*sin(q1)*sin(q2) + Pc3x*m3*sin(q1)*sin(q2)*sin(q3)) 
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