
The Effect of Robot Dynamics on Smoothness during Wrist Pointing

Andrew Erwin, Evan Pezent, Joshua Bradley, and Marcia K. O’Malley

Abstract— The improvement of movement smoothness over
the course of therapy is one of the positive outcomes observed
during robotic rehabilitation. Although movements are gener-
ally robust to disturbances, certain perturbations might disrupt
an individual’s ability to produce these smooth movements. In
this paper, we explore how a rehabilitation robot’s inherent
dynamics impact movement smoothness during pointing tasks.
Able-bodied participants made wrist pointing movements under
four different operating conditions. Despite the relative trans-
parency of the device, inherent dynamic characteristics neg-
atively impacted movement smoothness. Active compensation
for Coulomb friction effects failed to mitigate the degradation
in smoothness. Assessment of movements that involved coupled
motions of the robot’s joints reduced the bias seen in single
degree of freedom movements. When using robotic devices for
assessment of movement quality, the impact of the inherent
dynamics must be considered.

I. INTRODUCTION

The ability of able-bodied individuals to generate smooth
movements during natural paced pointing (reaching) tasks is
a well studied topic. In most of these studies, a planar robot
is used to measure the position of an end effector controlled
through sweeping upper arm movements. Movements of the
end effector exhibit single peaked velocity profiles, bell-
shaped in nature, and appear to fit a minimum jerk trajectory
model well. Much work has been put forth to understand
what model the central nervous system uses to create these
trajectories and if it prioritizes control on the joint or task
space. Regardless, it has been validated repeatedly that
reaching movements in either joint or task space result in
these smooth velocity profiles [1]–[3].

In [4] the capability of the central nervous system to
develop a feed-forward model of external perturbations was
demonstrated when a divergent force field was applied during
planar reaching movements, and after some unsmooth trials,
the movements became bell-shaped again. In [5] planar
movements were extended to vertical reaching tasks with
position measurements obtained through motion capture. The
same smooth bell-shaped velocity profiles were observed
despite gravitational and inertial loading, as well as for
moderate variation in movement distance, peak speed, and
duration [6]. These studies have been extended to the study
of wrist pointing movements in healthy participants using
wrist rehabilitation devices [7], [8].

These early studies on human motor control now play
an important role in the field of rehabilitation robots. After
neurological injury, the central nervous system typically
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produces trajectories with many sub-movements. Over the
course of therapy, the number of peaks generally reduces,
which might indicate the central nervous system reacting
positively to therapy. Teaching participants through motor
learning how to move as before is likely a key component
of rehabilitation [9]. Many researchers have used the fact that
pointing movements result in smooth single peak trajectories
to assess recovery from neurological injury by looking at how
movements become smoother over the course of therapy [10].
One metric, termed the movement smoothness correlation
coefficient, ρ , which correlates movements with a minimum
jerk trajectory, has even been shown to correlate well with
clinical measures [11]. These studies often compare measure-
ments made with a robotic device. The effect of the robotic
device on these measurements is less well-understood.

In several studies, researchers have observed that rehabil-
itation robots impact user’s movements [12], [13]. In [12]
the zero force control mode of the LOPES gait training
exoskeleton was evaluated. It was found that some kinematic
features were affected by the exoskeleton’s inertia and that
even muscle activation patterns were altered. In [13] the
performance of participants in creating Donder’s surfaces,
a task which looks at how the human motor control system
uses redundancies, was evaluated with a wrist exoskeleton.
These studies found that inertia of the forearm’s prona-
tion/supination joint altered participants’ ability to make
Donders’ surfaces, but that through direct force control
compensation, the issue could be alleviated. Although device
inertia can be partially compensated for [13], [14], it is also
important to have the device inertia be low enough so that
the compensated inertia is sufficiently low.

In this paper we have explored whether naturally back-
drivable rehabilitation robots perturb the central nervous
system’s ability to produce smooth movements. We used a
new exoskeleton created by our lab [15], the Rice OpenWrist,
which is similar to the RiceWrist-S [16], and other wrist
rehabilitation devices [13], [17]. We also attempted to see if
any impacts could be alleviated or amplified through virtual
Coulomb friction compensation or exaggeration. The results
of this study have important implications for the design of
future rehabilitation robots and the assessment of movement
smoothness during rehabilitation with these devices.

II. METHODS

In our experiments, participants were asked to make
wrist pointing movements within the Rice OpenWrist while
encoder and task-space position data were recorded. We an-
alyzed trajectories and movement smoothness for a number
of orientations and compensation methods.



A. Participants

Seven participants (2 female, 5 male) with an age range
of 21-27 years old (µ = 23 yr, σ = 2.1 yr) participated in the
experiment. All participants were right hand dominant with
no current injury or known history of neuromuscular injury
in their wrist. Approval for the experiment was obtained
through the Rice University Institutional Review Board.

B. Wrist Exoskeleton and Control

The device used in this study, called the Rice OpenWrist,
is a newly designed serial manipulator intended for wrist
rehabilitation (see Fig. 1). The exoskeleton is similar to the
RiceWrist-S [16], but with many improved features which
are described in [15]. The order of the device’s joint an-
gles are forearm pronation/supination (which was manually
locked in this experiment), wrist flexion/extension (FE), and
finally wrist radial/ulnar deviation (RUD). The device also
contains a passive linear slider in case of joint misalignment,
similar to [8], [13]. The joints consist of brushed Maxon
DC motors and cable drive transmissions with capstans for
amplifying torque output and smooth backdrivable opera-
tion. The RUD joint contains an additional pulley routing
mechanism to re-locate the motor’s torque to the capstan.
Values of experimentally estimated dynamic parameters for
the device, along with estimated human wrist parameters,
can be found in Table I. The human damping and inertia
estimates were found in [18] while the activities of daily
living (ADL) estimates are from [19].

Control and measurement of joint angles were executed
using Simulink Real-Time in conjunction with Quanser’s
Q8 USB data acquisition device running at a sampling rate
of 2000 Hz. Velocity estimates of encoder positions were
obtained through the Q8’s built-in instantaneous velocity es-
timator, which runs at 100 MHz. Analog voltage commands
from the Q8-USB were sent to Quanser’s Volt-PAQ-X4
amplifier which current controlled the brushed DC motors.

C. Task Description

Participants performed a wrist pointing task, similar to
the tasks presented in [7], [8], with movements recorded by
the Rice OpenWrist, a backdrivable serial wrist rehabilitation
exoskeletal robot. In this experiment, participants made wrist
pointing movements, 25◦ in amplitude, in the traditional
anatomical axes (FE and RUD) as well as in two directions
that required coordinated movements of the robot’s FE and
RUD degrees of freedom. These were aligned at ±45◦ from
the horizontal axis in task space. Movements along the
diagonal axes when abbreviated will be referred to as D.

Participants performed wrist pointing movements in four
different blocks with a new randomized condition in each
block. A visual display was used so that the participant
could visualize their wrist angle in the 2D coordinate space
{φFE ,φRUD} with a small circular cursor as well as see the
center and eight outer larger circular targets (see Fig. 2). Each
block started with the participants’ cursor on the center target
awaiting the first randomly selected outer target to turn green,
indicating the participant should move to that target. Once
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Fig. 1. Image of the Rice OpenWrist serial wrist rehabilitation exoskeletal
robot with several key features labeled including the definition and location
of the user’s wrist axes. 1) Forearm strap, 2) FE capstan, 3) FE rotational
joint, 4) passive linear slider, 5) RUD rotational joint, 6) RUD capstan, and
7) RUD pulley routing mechanism.

green, the target remained so for 0.85 s before turning red
indicating the movement should be completed. Participants
were instructed to make the wrist pointing movements in
one slashing motion at a pace fast enough to reach the target
comfortably before it turned red. The target remained red
for 0.85 s, before the center target would turn green upon
which the participant would generate a movement back to
the neutral wrist position. This procedure was then repeated.
The time duration was chosen to ensure that participants were
moving to the target with purpose, but also not so fast that
it became tiresome to keep up with the pacing, in which
case missed trials would occur. Participants performed 128
movements per block (16 to each target) with 32 being on
a traditional movement axis (FE and RUD) and 64 on the
diagonal axes. Participants typically practiced for 30 s with
each condition before starting each block.

To assist participants in staying on the desired axis of
movement, specifically for diagonal movements, we imple-
mented a virtual tunnel (see Fig. 2). The virtual tunnel
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Fig. 2. Image of the real-time visual display of the user’s cursor (small
orange circle) and nine targets shown to participants during the experiment
(note text and dashed lines shown here for reference only). In this trial,
the diagonal target requiring an equal combination of radial deviation and
extension has turned green, indicating a movement should be made to it.
When a target becomes active, a virtual tunnel is implemented (light blue)
to aid the user in making movements along the desired axis. The text next
to the targets correspond to: extension (E), flexion (F), radial (R) deviation,
ulnar (U) deviation, and diagonal (D).



TABLE I
WRIST ROBOT AND HUMAN WRIST PROPERTIES

Rice OpenWrist Human Wrist
ROM Torque Damping Inertia Resolution Kinetic Friction ADL ROM ADL Torque Damping Inertia

Joint [deg] [N ·m] [ N·m·s
rad ] [kg ·m2] [deg] [N·m] [deg] [N·m] [ N·m·s

rad ] [kg ·m2]

FE 135 3.6 0.0019 0.0119 0.0094 0.0541 115 0.35 0.03 0.001-0.003

RUD 75 2.3 0.0029 0.0038 0.0070 0.1339 70 0.35 0.03 0.001-0.003

repelled movements into it, but did not provide any assistance
along the desired axis. The virtual tunnel consisted of virtual
walls on either side of the movement axis with a virtual
stiffness of 30 N·m

rad and virtual damping of 0.5 N·m·s
rad . FE

and RUD movements were relatively easy for participants
to make straight movements; however, without the tunnel,
making straight multi-DOF off axis movements was very
difficult due to friction being felt in both directions simul-
taneously from the device. Implementing a virtual tunnel
allowed participants to focus on executing movements and
not the disturbance forces which made it difficult to make
straight and smooth movements to the diagonal targets. The
virtual tunnel was desirable for our experiment since we were
only interested in wrist movement velocity profiles.

Participants sat in a comfortable posture consisting of
slight shoulder abduction and flexion, elbow flexion, and a
neutral forearm orientation. The forearm was secured through
a splint that could be compressed around the forearm through
a Velcro strap. The neutral orientation of the wrist was
defined with respect to that of being in a neutral orientation
while grasping a handle. Neutral FE was when the forearm’s
long axis passed through the center of the handle, while
neutral RUD was defined according to holding a handle 30◦

from vertical in the direction of radial deviation. This angle
was chosen to maximize allowable range of motion in our
wrist exoskeleton and to put the user in a comfortable wrist
orientation. In general this definition of neutral put the wrist
in some extension, but also closely corresponded with the
neutral definition of the third metacarpal aligning with the
forearm’s long axis for RUD.

D. Conditions

The experiment consisted of four blocks with four condi-
tions (C1, C2, C3, and C4) presented in a pseudo-random
fashion to eliminate effects due to order of condition pre-
sentation. All conditions contained the virtual tunnel, but
C1 and C2 did not contain any additional active interaction
torques from the robot. In C1 movements were made as
intended by the design of the device with the participants’
wrist FE axis aligning with that of the robot’s FE axis and
the participants’ wrist RUD axis aligning with that of the
robot’s RUD axis with the forearm in a neutral orientation
(see Fig. 3(a)). In C2 participants pronated their forearm
90◦ so that the wrist’s RUD axis aligned with the robot’s
FE axis, and the wrist’s FE axis aligned with that of the
robot’s RUD axis (see Fig. 3(b)). This condition was explored
since the robot’s RUD joint contained much more static
and kinetic friction than the FE joint. By performing this

condition, we could eliminate any differences in movements
caused by wrist rotation direction, and solely examine the
effects of the robot’s dynamics on wrist motions for a given
wrist movement direction. Note that measurements reported
later in the paper as RUD-C2 refer to a participants’ wrist
RUD movements being measured on and by the robot’s FE
joint and vice versa for wrist FE movements. A movie of a
participant making wrist pointing movements in C1 and C2
has been included in the Supplementary Materials.

In C3 and C4 participants resumed a neutral forearm
orientation and the alignment in C1, but the device now
provided extra assistance (C3) or resistance (C4) in an effort
to reduce or amplify perceived Coulomb friction which was
one of the main sources of interaction torque reflected to
the user. We hypothesized that by reducing the effects of
Coulomb friction, that movements would become smoother,
especially for movements performed on the robot’s RUD
joint. We expected that exaggerating Coulomb friction would
make movements less smooth. Virtual Coulomb friction was
applied separately to each joint using a continuous Coulomb
friction model

Fc,a = Fctanh(kθ̇) (1)

where Fc,a is the applied Coulomb friction, Fc the steady
state Coulomb friction magnitude, k defines how quickly
the tanh function approaches steady state, and θ̇ is the
joint velocity. In this experiment we used k = 0.8 and Fc
to be 75% of the device’s kinetic friction values given in
Table I. In an effort to remove gravitational loading as a
factor, simple gravity compensation was implemented on the
device’s RUD joint, compensating for 75% of the device’s
11.5 N ·mm gravitational torque in the neutral orientation.
It should be noted that the device felt significantly more
transparent (especially on the device’s RUD joint) with the
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Fig. 3. (a) Participants’ neutral posture in conditions 1, 3 and 4.
(b) Participants’ neutral posture in condition 2 where now a wrist RUD
movement is on and measured by the robot’s FE axis. A rotated grip was
used in this condition to allow for the rotated neutral forearm orientation.



compensatory control action in C3, and felt significantly
worse with the added Coulomb friction during C4.

E. Data Analysis

1) Velocity Segmentation: Velocity data of the FE and
RUD axes were used to calculate the task space tangential
velocity of each movement. As in [7], [8], velocity profiles
for each movement were segmented by only keeping velocity
starting and ending with the condition |v(t∗)| > 0.05 · |vmax|
where vmax is the maximum velocity for the movement.
From this segmented velocity, the movement smoothness
correlation coefficient (ρ) [11] was calculated as

ρ =
Σ[(vp− v̄p)(vm j− v̄m j)]√
Σ(vp− v̄p)2Σ(vm j− v̄m j)2

(2)

where vp is the participants’ tangential velocity, v̄ is the mean
velocity, and vm j is the minimum jerk trajectory given by

vm j = ∆

(30t4

T 5 −
60t3

T 4 +
30t2

T 3

)
(3)

where ∆ and T are the movement distance and duration
respectively.

2) Statistical Analyses: Statistical comparisons were
made using Welch’s t-test for all 18 possible comparisons
of conditions within a given movement axis (FE, RUD, and
D). Since eighteen tests were performed, the αc levels were
adjusted using the false discovery rate correction to account
for the family-wise type I error inflation.

III. RESULTS

In this section segmented velocity data and corresponding
movement smoothness, measured through the movement
smoothness correlation coefficient ρ , are presented. This data
is presented for all movement directions (FE, RUD, and D),
and conditions (C1, C2, C3, and C4). The data highlight the
differences in movement variability and smoothness for the
movement directions and conditions. A plot of the movement
velocity profiles for wrist FE and RUD movements for all
four conditions can be seen in Fig. 4. Time and amplitude are
normalized for visualization of variability in profiles, while
color of the plots highlights which robot axis the movements
were made on. Additionally, the average peak time, time at
maximum velocity, of each set of movements is shown on the
plots to visualize how movements were skewed depending
on condition and movement direction. Diagonal movements
are not shown due to space constraints.

Representative velocity profiles for movements during C1,
and the minimum jerk trajectory (included for reference),

TABLE II
GROUP MEAN VALUES FOR ρ

C1 C2 C3 C4

FE 0.971 0.865 0.971 0.964

RUD 0.848 0.956 0.882 0.865

D 0.959 0.936 0.946 0.943

Fig. 4. Velocity profiles for FE and RUD for all four conditions.
For visualization, movements were normalized with respect to time and
amplitude. Movements made on the robot’s FE joint are in blue, while
movements made on the robot’s RUD joint are in green. The red dots
indicate the average peak time for a given movement direction and condition.
For reference, a vertically dashed line is shown at t=0.5 which is the peak
time for the minimum jerk trajectory

can be seen in Fig. 5. This plot highlights the shape and
skewness of individual velocity profiles, instead of overall
trends in movements as in Fig. 4. The representative profiles
were selected such that ρ and peak time for the movement
matched that of the group mean for that axis and condition.

The group mean ρ values for each axis and condition are
presented in Table II. Comparison of group means for FE and
RUD movements with respect to robot axis (C1 and C2) can
be seen through a barplot in Fig. 6(a). A barplot comparing
conditions with human and robot axes traditionally aligned
with no Coulomb friction compensation, compensation, and
amplification (C1, C3, and C4) for FE and RUD can be seen
in Fig. 6(b). Finally, a barplot comparing all conditions for
diagonal movements is presented in Fig. 7.

Eighteen t-tests were performed examining the effect of
condition (C1, C2, C3, and C4) on ρ , along each axis. False
discovery rate was applied to adjust the critical α value from
the 0.05 significance level. Significant differences were found
in six of the eighteen comparisons. In comparison between
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Fig. 5. Plot of the minimum jerk trajectory against representative velocity
profiles from C1 for FE, RUD, and D. Representative velocity profiles were
selected with ρ and peak time values approximately that of the group mean.
Time and amplitude were normalized for comparison purposes.
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Fig. 6. Movement smoothness correlation coefficient ρ for all FE and RUD conditions. Error bars are 1.96 times the standard error of all movements for
a given condition and movement axis. Statistical significance is indicated by *. (a) Comparison of C1 and C2. (b) Comparison of C1, C3, and C4.

conditions one (C1: human and robot aligned as intended,
see Fig. 3) and two (C2: human axes rotated compared to
robot axes as intended, i.e., human RUD wrist movements
performed and recorded by the robot’s FE axis, see Fig. 3),
a significant (t(4.7) = 7.5, p = 0.002,αc = 0.008) difference
was found between FE-C1 and FE-C2, and between RUD-
C1 and RUD-C2 (t(4.6) = 9.8, p = .001,αc = .006). Com-
parisons involving conditions three (C3: human and robot
axes aligned with Coulomb friction compensation) and four
(C4: human and robot axes aligned with Coulomb friction
amplification) had significant differences between FE-C2
and FE-C3 (t(4.8) = 7, p = .002,αc = .01), FE-C2 and FE-
C4 (t(4.5) = 6.8, p = .003,αc = .014), RUD-C2 vs. RUD-
C3 (t(3.4) = 10.5, p = .006,αc = .02), and RUD-C2 and
RUD-C4 (t(4.5) = 11, p = .0009,αc = .003). None of the
other comparisons made were significant, and other than the
comparison between D-C1 vand D-C2 (p = .048,αc = .019),
all other comparisons were not significant with p > 0.19.

IV. DISCUSSION AND CONCLUSIONS
In this paper we presented a wrist pointing experiment

with seven healthy participants. Participants made a total
of 896 movements for each of the four operating condi-
tions (3,584 total movements). In the first condition (C1),
participants operated under normal conditions, with the
human and device axes aligned. In the second condition
(C2) participants pronated their forearm 90◦ such that now
their wrist RUD axis aligned with the robot’s FE axis
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Fig. 7. Movement smoothness correlation coefficient ρ for movements
made on the diagonal axes within each condition. Error bars are 1.96 times
the standard error of all movements for a given condition.

and vice versa. Finally, in the third and fourth conditions,
virtual Coulomb friction was either subtracted (C3) or added
(C4) to decrease or increase user effort respectively and to
reduce or increase the device’s perceived Coulomb friction.
We analyzed participants’ movement smoothness through
the movement smoothness correlation coefficient ρ , which
correlates velocity profiles with the minimum jerk trajectory.

In the main result, we found that ρ is significantly different
when the orientation of the hand with respect to the robot
joints is changed. We found that movements on the robot’s
RUD axis were less smooth than movements made on the
robot’s FE axis. The robot’s RUD axis had more friction than
the FE axis, but also substantially less inertia (see Table I).
Without performing C2, one might arrive at the incorrect
conclusion that human RUD movements made in the robot
are less smooth than FE ones. However, by performing C2,
the main difference between C1 and C2 is which robot axis
the human wrist axis was on and so this conclusion can no
longer be made.

Since friction in the RUD joint was much larger than the
FE joint, we hypothesized that compensating some of this
friction might lead to smoother movements. Although the
robot felt much more transparent during C3, and not very
transparent during C4, this conclusion was rejected since
there was no statistical significant difference between any of
the diagonal conditions. Since movements were not different
as a result of C3 or C4 for the diagonal movements, which
were equally perturbed by the robot’s FE and RUD axes, we
can conclude that the robot’s FE axis facilitates smoother
movements than those on the robot’s RUD axis.

The discrepancy found in ρ between FE or RUD in C1 and
C2 is likely a result of non-linear phenomena related to static
friction, which is impractical to compensate. Compared to
the robot’s FE joint, the RUD axis requires a pulley routing
mechanism which creates additional friction. However, we
can also observe that movements on the robot’s FE axis
are extremely smooth and could be a result of the device’s
inertia. The device’s FE axis inertia is significantly larger
than that of the human wrist while the device’s RUD axis
inertia is comparable. This would agree with observations
of wrist movements in [20], where inertial loads tended
to aid movements in following a minimum jerk trajectory,



since inertial loads act as a mechanical low-pass filter. As a
result, we cannot conclude that movements on either axis are
unaffected by the robot, but we can conclude that the robot
does impact movement smoothness. Additionally, the fact
that C3 or C4 did not impact any movement axis suggests
that steady-state Coulomb friction perturbations are not likely
to impact the central nervous system’s abilities to generate
smooth movements. However, it is likely that the neural
control mechanism for smooth trajectory generation could
not adapt to low-velocity nonlinearities due to static friction
phenomena. Note that while gravity might also have a role
in the differences found between FE and RUD in C1 and C2
[21], examining movement smoothness between movement
directions for RUD-C1 showed little difference.

It is important to note that the values for inertia and friction
here are representative of other wrist rehabilitation robots
[13], [16], [17], which are generally regarded as highly trans-
parent devices. However, we found that although interaction
torque is much lower than that producible from a healthy
participant, that even moderate interaction torques could
impact an individual’s ability to produce smooth movements.
In this case inertia approximately 5-10x that of the wrist
seemed to aid in generating very smooth movements while
friction, on the order of 0.1 N ·mm, resulted in less smooth
movements. Where natural movement smoothness lies for
wrist trajectories cannot be inferred from this study and is
left as future work. Given the seemingly positive impact
of inertia on movements, one might argue that actually the
friction on the RUD joint was not a negative impact, and
while this is possible, it is not likely since we found that
pilot movements in our RW-S, which had larger friction in
the RUD joint, resulted in even less smooth movements being
made on that joint. Although the Rice OpenWrist certainly
improved upon the perceived friction, there was still some
and it had a significant impact on movement smoothness.

Future work should explore inertial compensation of the
joint to see if that has an impact on movement smoothness.
Several studies have designed compensators for inertia [13],
[14], although these are usually difficult to implement and
can become non-passive. In general it seems feasible to
compensate for up to 50% of a device’s inertia. Additionally,
designers might take these results into account and attempt
to make lower inertia and lower friction joints than before.
Another approach to this issue could be to use direct force
control as in [13], but it is also unknown how force control
would impact pointing movements.

Robotic devices have been used for several decades to
study neural control during pointing movements. However,
little consideration has been given to how these pointing
movements might be impacted by intrinsic robot dynamics.
Robots certainly provide an excellent opportunity to study
movements, especially when considering the high resolution
and repeatability that can be obtained using them when
compared with less obtrusive means such as motion cap-
ture or inertial measurement units. However, we need to
carefully consider the role robots might play in influencing
natural movements, even when the device feels relatively

transparent. Given the results of this study, it is critical
when assessing changes in movement smoothness during
rehabilitation to compare within a given robot joint so that
movements are compared with respect to the same baseline.
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